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Figure 1: The empathic agent conditions in the experiment: (1) No Awareness Agent (NAA): The agent randomly praises
users’ shooting ignoring users’ Skin Conductance Level (SCL) changes. (2) Random Awareness Agent (RAA): The agent will
randomly comment on users’ SCL changes. (3) Accurate Awareness Agent (AAA): The agent will provide accurate comments
on the users’ SCL changes whenever the arrow is displayed. The arrow in each picture lets users know the changes in their SCL.

(4) The study setup - a participant wearing the Meta Quest 3 and Shimmer sensors.

ABSTRACT

In human-agent interaction, establishing trust and a social bond
with the agent is crucial to improving communication quality and
performance in collaborative tasks. This paper investigates how
a Mixed Reality Agent’s (MiRA) ability to acknowledge a user’s
physiological state affects perceptions such as empathy, social con-
nectedness, presence, and trust. In a within-subject study with
24 subjects, we varied the companion agent’s awareness during a
mixed-reality first-person shooting game. Three agents provided
feedback based on the users’ physiological states: (1) No Aware-
ness Agent (NAA), which did not acknowledge the user’s physio-
logical state; (2) Random Awareness Agent (RAA), offering feed-
back with varying accuracy; and (3) Accurate Awareness Agent
(AAA), which provided consistently accurate feedback. Subjects
reported higher scores on perceived empathy, social connectedness,
presence, and trust with AAA compared to RAA and NAA. Inter-
estingly, despite exceeding NAA in perception scores, RAA was the
least favored as a companion. The findings and implications for the
design of MiRA interfaces are discussed, along with the limitations
of the study and directions for future work.

Index Terms: Empathic computing, virtual agent, mixed reality,
augmented reality, physiological state.
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1 INTRODUCTION

Recent advancements in Artificial Intelligence (Al) [69] and Mixed
Reality (MR) [47] have catalyzed the development of new human-
agent interactions. In these settings, Intelligent Virtual Agents
(IVAs) [5] are embodied in MR environments as Mixed Reality
Agents (MiRAs) [34]. Due to the seamless connection between
the real and virtual worlds, these MiRAs engage dynamically with
both virtual and physical environments [53, 52, 78, 25], marking
a shift from traditional IVAs that operate on 2D screens. Mi-
RAs, existing in the same 3D space with users, enhance percep-
tions of co-presence [61], social presence [40, 43], user experi-
ence [71] and reference [77] through their interaction with the phys-
ical world, which is often mediated by the Internet of Things (IoT)
sensors [53].

A critical aspect of human-agent interaction is the formation of
trust and social bonds, which are essential for effective collabora-
tion in joint tasks [8]. Empathy in agents, or their ability to under-
stand users’ emotions, plays a significant role in personalizing inter-
actions and enhancing user experience [31]. Although employing
physiological sensors to gauge users’ emotional and physical states
is a promising approach to fostering empathy [24], the effectiveness
of such strategies requires further exploration.

In this context, MiRAs must possess the empathic capacity to
perceive and respond to users’ affective states [56, 57]. This
can be facilitated by physiological sensors, such as electromyo-
grams (EMG) [15], electroencephalograms (EEG) [12], electroder-
mal activity (EDA)[73], electrocardiograms (ECG) [80], and photo-
plethysmograms (PPG) [38]. These sensors provide a deeper under-
standing of user states, potentially transforming MiRAs into Em-
pathic Mixed Reality Agents (EMiRAs) [13, 11, 57]. However, how
to effectively utilize physiological sensing to enhance perceived
empathy in EMiRAs remains an open research question.

This paper investigates the impact of EMiRAs’ empathic capa-
bilities, informed by their awareness of users’ physiological states,
on users’ social perceptions of these agents. We conducted a
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within-subject study using the level of the agent’s awareness as the
independent variable. Participants played an MR shooting game,
accompanied by an agent, under three conditions: (1) an agent un-
aware of the user’s physiological states, (2) an agent that reported
the user’s physiological states randomly, sometimes inaccurately,
and (3) an agent that monitored the user’s physiological states accu-
rately and reacted accordingly. Our findings suggest that the agent
awareness of users’ physiological states can enhance perceived em-
pathy, and accurate monitoring further improves human-agent so-
cial interaction.

Our work contributes in three ways: )
C1. Pioneering the integration of physiological sensors to foster

empathy in MiRAs;

Assessing how agents’ recognition of users’ physiological
states influences perceived empathy;

Offering new design implications for enhancing empathy in
MiRAs.

C2.

C3.

2 RELATED WORK

Our research extends earlier work on Empathic Agents, Mixed Re-
ality Agents, and Physiological Biofeedback Systems. This section
provides a summary of key related work in each of these areas.

2.1

Empathic agents are social agents that 1) show empathy towards
users and/or 2) elicit user empathy towards them. For example,
a virtual empathic therapist can make social conversation and ad-
vise users [66]. This empathic agent definition is based on the
Perception-Action Mechanism of empathy [64], and a computa-
tional empathy model for empathic agents, comprising the em-
pathic appraisal and response [68]. In human-agent social inter-
action, empathic agents can appraise the human user’s emotional
states and make appropriate empathic responses [21].

Empathic appraisal is a fundamental aspect of empathic agents
and involves using sensors to recognize human emotions [30].
Physiological sensors, such as EEG, EDA, and PPG, can be used
for automated emotion recognition [23]. For example, EEG, ECG,
and facial expressions can be input to a conversational agent in cog-
nitive behavior therapy to predict users’ emotions [49]. Similarly,
Gupta et al. [33] presented a real-time emotion prediction model
based on EEG, EDA, and PPG signals and applied it to a context-
aware empathic virtual agent. However, human emotion is com-
plicated to model [39], and current technology cannot consistently
and accurately evaluate human emotion [74]. The impact of an em-
pathic agent’s imperfect detection of users’ physiological and emo-
tional states on perceived empathy [79] remains unclear.

Empathic Agents

2.2 Mixed Reality Agents

MiRAs are agents embodied in MR that can make virtual-physical
interactions with the MR environments [34]. For example, Dragone
etal. [22] designed a MiRA by augmenting a virtual character into a
physical robot with both virtual and physical body parts. The virtual
part could gaze and point at a physical ball, while the physical part
could move toward the ball, grab it, and take it back to the user. For
a virtual agent embodied in MR [54], the virtual-physical interac-
tion can be driven by IoT sensors and actuators [53]. For example,
Kim et al. [41] presented a virtual human seamlessly integrated into
the physical environment, which can perceive and respond to real-
world fans. Similarly, Lee et al. [43] created a virtual human aware
of the subtle movements in a shared real-virtual table.

However, these MiRAs primarily focus on the interaction be-
tween virtual agents and the physical environment. To expand
the virtual agent’s interaction capabilities from non-human physi-
cal environments to human users, physiological sensors [35] and
tactile sensors [67] can be employed. For example, Prendinger
and Ishizuka [63] introduced a virtual empathic companion to sup-
port users during virtual job interviews, where they used Galvanic
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Skin Conductance (GSR) and Heart Rate (HR) sensing to enable
the agent to detect users’ stress. While these studies demonstrate
the potential of physiological sensing in enhancing virtual agents’
empathic responses, they have primarily focused on 2D interfaces.
The integration of such physiological sensing capabilities into vir-
tual agents embodied in 3D immersive MR environments remains
largely unexplored.

2.3 Physiological Biofeedback Systems

Biofeedback systems employ a range of sensors to monitor individ-
uals’ physiological and physical bodily functions, that they may not
be typically conscious of [42]. Physiological biofeedback systems
represent a major subset within the biofeedback systems, based on
signals and parameters acquired from the neuromuscular, cardio-
vascular, respiratory, brain, skin, and other body systems [29]. Such
biofeedback systems have been applied in medical diagnosis [6],
rehabilitation [45], and even video games [51]. For example, Par-
nandi and Gutierrez-Osuna [59] presented an adaptive biofeedback
game that aims to maintain the player’s arousal by modifying game
difficulty in response to the player’s physiological state, as mea-
sured with EDA. Such adaptive games can engage players while
not overwhelming them. Some games use physiological biofeed-
back through sensors like EDA, EMG, and PPG to offer opportuni-
ties for affective feedback [19].

Among those physiological sensors mentioned above, EDA or
Skin Conductance Level (SCL) has been widely used to capture
physiological arousal caused by stress and anxiety [62, 73, 72]. For
example, Chiossi et al. [14] created a visual complexity adaptive
system based on users’ online changes in SCL compared with a
dynamic baseline. In this work, we used the algorithm presented in
[14] to capture users’ online SCL states while playing an intensive
MR shooting game, with a higher level of SCL indicating greater
emotional arousal.

Compared to prior work on empathic agents, MiRAs, and phys-
iological biofeedback systems, our work is novel in a number of
ways. Inspired by the benefits of virtual humans’ awareness of
physical events in improving social presence [43, 61], we were
interested in exploring users’ social perception (see Sec. 4.6) of
a MiRA that can sense and show awareness of users’ physiologi-
cal states. Unlike other systems that adjusted game difficulty level
based on user stress, we wanted to employ a virtual human interface
to deliver feedback on user physiological changes. So we created an
empathic agent that could show awareness of users’ physiological
states at different accuracy levels and investigated how such aware-
ness influences users’ perceived empathy. This system is described
in detail in the next section.

3 SYSTEM OVERVIEW

Our hardware system comprises physiological sensors, one desktop
computer, and one standalone MR headset (see Fig. 2). The soft-
ware system consists of the physiological state monitoring module,
the DroneRage game module, and an MR agent module. The phys-
iological state monitoring module written in Python runs on the PC,
while the other two modules created with Unity 3D run on an MR
headset, i.e., Meta Quest 3. As shown in Fig. 1, users wearing
physiological sensors and an MR headset interact with the virtual
content powered by our developed software. Their physiological
states will be monitored and displayed on the headset. Upon ap-
plication launch, a 3D User Interface (UI) floated in front of users,
showcasing crucial information through editable text boxes reveal-
ing the IP address of the physiological monitoring module and the
participant’s ID alongside toggles for experimental conditions. It
also includes a start experiment button guiding users to the DroneR-
age game and MR agent module, where an MR human-like agent
stands 30 degrees to the right and 2 meters away from the users, fac-
ing them directly (see Fig. 1 (1-3)). The agent acts as an empathic
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Figure 2: System overview in hardware and software.
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Figure 3: An overview of how SCL changes were calculated online
using the algorithm proposed by Chiossi et al. [14].

game companion throughout the game, closely watching players’
gameplay and providing feedback on their shooting behavior or
physiological state. We will explain the three software modules
in detail and their implementation in the following subsections.

3.1

The physiological state monitoring module was designed to detect
and calculate the player’s Skin Conductance Level (SCL) changes
online while the player was playing the DroneRage game (see
Fig. 2). The calculated SCL state was sent to the DroneRage game
module through the network (see Sec. 3.3 for further explanation).
In addition to the online calculation of the player’s physiological
states, the physiological monitoring module can log raw physiolog-
ical data to disk alongside markers received from the Unity side
through the network, facilitating offline data analysis (see Sec. 4.6).

Inspired by the SCL-based adaptation strategy of [14], we
adopted the method they used for online detecting SCL changes.
We just visualized the detected SCL changes, which served as a
ground truth to remind the player about the changes in their physi-
ological state while playing the testing game.

ft) = (Z:'X:tx—g SCL(t;))/¢€
wi =1yt

si=(f(to) — f(t:))/wi

wherei= -2, —1

Physiological State Monitoring

(€]

As shown in Fig. 3, their algorithm compares s_; and s_,, which
are slopes of two lines identified by SCL points at ¢y, 5 and 7_1.
The calculation of s_; and s_; are shown in Eq. (1), where SCL(t;)
represents the SCL value at time point #; and f(¢,) denotes the mean
value of SCL from time #; — € to #;. Based on Fig. 3 and Eq. (1), all
SCL states are shown in Eq. (2), where 0 is a threshold to activate
the SCL changes.

increase ifs_o<s_1—6
SCLstate(s_1,5_p) = decrease if s_y>s_j+6 2)
nochange otherwise
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Table 1: The DroneRage game parameters.

Wave Total Number Max Drone
Number of Drones Live Drones | Spawn Time

1 1 1 4

2 5 2 2

3 9 3 1.5
4 13 4 14
5 17 5 1.3
6 21 6 1.25
7 25 7 1.21

Lastly, the SCL state was calculated in a preset time step (fs)
to avoid frequent updates in the MR Agent Module. We used a
double-ended queue [55] to cache the (w_, + €) seconds data for
calculating the SCL states. Once an SCL state is calculated, the
physiological monitoring module will delete the earliest 7, seconds
data in the queue and wait for another #; seconds for new data to be
enqueued.

3.2 The Mixed Reality Agent

In the MR agent module, we used a 3D virtual male character gen-
erated from the ReadyPlayerMe [3] . We downloaded an idle an-
imation from Mixamo [2] and applied it to the virtual character
to make its body move slightly. We used the Fimpossible Creat-
sons’ eyes and look animator [17, 18] packages to create natural eye
movement and looking behaviors. During the DroneRage game,
the virtual agent would randomly look at the players or one of the
enemies. The agent’s verbal cues were enabled by audio clips pre-
generated using the IBM Watson Text-to-Speech service [16] Each
speech has at least three synonymous phrases of similar length and
meaning to avoid stiffness.

The virtual agent’s speech intention can be classified into greet-
ing, self-introduction, praising users’ shooting, and commenting on
users’ physiological states. Before the game starts, the virtual agent
briefly greets users and makes a self-introduction. During the game
session, by default, the virtual human randomly praises users for
shooting when enemies take damage. Whenever the users’ physio-
logical states change, the virtual agent would either ignore or com-
ment on the users’ physiological state based on experimental con-
ditions (see Fig. 1(1-3)). To avoid any direct intrusion into users’
emotions, we crafted the speech structure of the virtual agent to
first report objectively detected physiological changes and then in-
fer feelings of stress. For example, one of the comments on users’
physiological states was, ”I've noticed your skin conductance level
decreasing, indicating some decreased stress.”

3.3 The DroneRage Game

The DroneRage game module is a shooting game in the MR envi-
ronment, which was developed based on the open-source Discover
project [65] As shown in Tab. 1, the game has seven rounds of en-
emy drones, with increasing totals and maximum live enemies. The
game will upgrade to the next round after 5 seconds when all the en-
emies are eliminated. The game advances to the next round 5 sec-
onds after all enemies are eliminated. Players use an MR headset,
with the controller in their dominant hand as a virtual gun, shooting
by pulling the trigger. A health bar on the gun keeps players aware
of their health. We integrated the physiological state visualization
feature into the DroneRage game. Whenever the DroneRage game
module receives the player’s physiological state from the physio-
logical monitoring module (see Sec. 3.1), it activates a visualiza-
tion event, displaying an arrow in the player’s view for 5 seconds
to signify an increase or decrease in the physiological state. The
arrow, measuring 30 cm in height and 30 cm in width, was placed
1 meter away and 0.5 meters below the user’s eye level (see Fig. 1).
No arrow will be displayed if there is no change in the state. The
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physiological visualization event also notified the MR agent mod-
ule to trigger different agent behaviors based on the experimental
conditions shown in Sec. 4.1.

3.4

The DroneRage game and MR agent modules were developed
in Unity 2022.3.1f1 on a desktop computer powered by an In-
tel(R) Core i7-12700F CPU and NVIDIA GeForce RTX 3070 GPU,
which was the same computer we used for running the physiolog-
ical monitoring module. We used the Meta Quest 3 MR headset
and the Shimmer3 GSR+ sensor, which includes both the EDA and
PPG sensors. We used the ECL-Shimmer-C-API [70] to fetch real-
time physiological signals and send the raw data to our monitoring
module via Lab Streaming Layer (LSL) library [1] The detected
physiological states were updated to the Unity side through a net-
work message queue ZeroMQ [4].

Implementation

4 USER STUDY

This section describes our conducted user study aimed at addressing
the following research question: How does an EMiRA’s awareness
of the users’ physiological states impact users’ social perception
of such an agent?

4.1 Experimental Design

We designed a within-subject user study to explore the impact of
an agent’s awareness of user SCL on user social perception of in-
teraction with EMiRAs. The study involved three types of vir-
tual agent: 1) No Awareness Agent (NAA), 2) Random Awareness
Agent (RAA), and 3) Accurate Awareness Agent (AAA).

In the NAA condition, the agent would initially greet the player
and introduce itself as a game companion capable of monitoring
the player’s physiological state. It would then invite the player to
play the game. During the game session, the agent would praise the
participant’s shooting based on the logic outlined in Sec. 3.2, but
would not respond to the user’s SCL changes. In the RAA condi-
tion, when the user’s SCL increased or decreased, the agent showed
random awareness of such changes, with speech behavior randomly
selected from options of increase, decrease, and no change, each
with equal probability. For instance, when the user’s SCL state was
displayed as an upward arrow, the RAA might have a probability of
1/3 of accurately verbalizing the user’s SCL state, 1/3 probability
of wrongly reporting it, and 1/3 probability of ignoring it. In the
AAA condition, the agent was programmed to consistently provide
accurate reports of the user’s SCL states, as indicated by the arrow.

As detailed in Sec. 3.2, the virtual agent’s dialogue regarding
the player’s SCL states involved objectively describing the SCL
level and inferring the player’s stress level. The NAA condition
was established as a baseline, while the RAA condition simulated
the limitations of current technology in detecting physiological and
emotional states. Conversely, the AAA condition simulated the po-
tential technological advancements for improved accuracy.

Based on previous research on the benefits of empathic agent
systems [76, 63], we established our hypotheses as below:

H1 Showing awareness of the user’s physiological states could
enhance users’ social perception of an EMiRA (as measured
by perceived empathy, trust, etc.).

H2 Accurate awareness of the user’s physiological states in the
EMiRA would further improve users’ social perception of
such an agent.

For H1, we expected both the RAA and AAA conditions would
receive higher ratings on the social perception measures presented
in Sec. 4.6. For H2, we expected the AAA condition would exceed
the RAA condition in users’ social perception.
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4.2 Participants

We recruited 24 participants (11 male, 12 female, and 1 non-binary)
aged 19 to 39 (M = 25.92, SD = 4.49), from the university cam-
pus. We requested participants to share their experience with MR
devices, virtual agents like Amazon Alexa, Microsoft Cortana, or
Apple Siri, and smart wearable devices with physiological detec-
tion, like the Apple Watch. Their experiences with these technolo-
gies were assessed based on their frequency of use, categorized into
three groups: never, occasionally (e.g., semesterly or annually), and
frequently (e.g., daily, weekly, or monthly).

Regarding their experience with MR devices, 14 participants re-
ported using them a few times, 7 had frequent usage, and only 3
reported never using such devices. In terms of using virtual agents,
16 participants reported occasional usage, 2 reported frequent us-
age, and 6 never used them. 11 participants reported occasional
usage of smart devices capable of detecting physiological states, 2
frequent usage, and 6 never used them.

4.3 Experimental Setup

Inspired by [14], we ran rounds of preliminary tests to determine the
values of parameters in Eq. (1) and Eq. (2) for calculating the SCL
states in our experimental task to avoid frequent updates in SCL
changes and virtual human speech. We set the w_; at 30 seconds
and the w_; at 2 seconds to calculate the s_» and s_;. The € was
1 second to calculate the SCL at a given time point. The sampling
rate was set at 256 Hz. We cached 31-second (w_, + €) data for
calculating the SCL states. Once the first SCL state was calculated,
new SCL states were calculated and updated every 12 seconds. The
6 in Eq. (2) was determined for each trial per participant by averag-
ing the absolute differences between s_; and s_», calculated during
the one-minute baseline correction phase described in Sec. 4.5.

4.4 Experimental Task

Participants played DroneRage with the Quest 3, using their domi-
nant hand to hold a controller, displayed as a gun in MR. The MR
agent greeted and introduced itself, then invited participants to play.
They pressed button “A” (right controller) or “X” (left controller)
to start the baseline correction, during which their SCL slope was
calculated to determine the 6 value. To reduce EDA signal noise,
participants were asked to stay still and relax. After baseline correc-
tion, the first wave of drone enemies spawned and flew in through
the ceiling (Fig. 1). Participants shot these enemies by pulling the
trigger and observed the virtual agent’s behavior to see if it accu-
rately perceived their physiological state. The game ended automat-
ically 3 seconds after all waves were completed or if the player’s
in-game blood level reached zero.

4.5 Experimental Procedure

When participants entered the room, they were welcomed, seated
at a computer, and given a slide explaining the experiment. After
agreeing to participate, they signed a consent form and completed
a demographic questionnaire. They were then seated in front of a
wall and fitted with the Quest 3 headset. They entered their partic-
ipant ID and experimental conditions on the UI (Sec. 3), while the
experimenter started streaming EDA and PPG signals. Participants
began the experiment by clicking the start game button, engaging
in a task described in Sec. 4.4, with the MR agent’s behavior ma-
nipulated based on the experimental condition.

Before the first condition, they completed a training session
without the virtual agent but with the same task features, followed
by a one-minute rest. Participants then experienced the experimen-
tal task in a Balanced Latin Square order, with the experimenter
removing the headset after each trial for them to complete question-
naires (Sec. 4.6). Each participant completed three trials in about
90 minutes. Afterward, a semi-structured interview was conducted
to understand their experience and perceptions of the agent.
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4.6 Measurements
4.6.1

Perceived Empathy: Measuring perceived empathy in vir-
tual agents lacked consensus on evaluation methods. Ozge Nilay
Yal¢in [79] proposed to evaluate perceived empathy using system-
level and feature-level evaluation methods. The system-level eval-
uations focus on the overall perception of empathy in social agents,
which can be affected by the social agents’ appearance, human
likeness, and perceived intelligence [48]. These agent factors can
be evaluated using the Godspeed questionnaire [7], originally de-
veloped to measure robots’ anthropomorphism, animacy, likabil-
ity, perceived intelligence, and perceived safety. In contrast to real
robots that possess physical body parts, our EMiRAs are designed
with only virtual human appearances, thereby minimizing safety
risks. To assess the overall perceived empathy in our EMiRAs, we
utilized the Godspeed questionnaire, omitting items that pertain to
perceived safety.

Subjective Measures

Social Connectedness: We measured the social connected-
ness between users and the EMiRA using the “Inclusion of the
Other in the Self” (I0S) questionnaire [28]. Social connectedness
has been proven to be closely related to empathy [37].

Social Presence: We were interested in whether the virtual
agent’s awareness of human users’ physiological states can also in-
crease social presence. We measured the social presence with the
questionnaire used by Leite et al. [44], which comprises six sub-
scales: co-presence, attentional allocation, perceived message un-
derstanding, perceived affective understanding, perceived affective
interdependence, and perceived behavioral interdependence.

Trust: Empathic capabilities in interactive agents are shown to
lead to more trust [10]. In our study, the AAA condition accurately
showed awareness of user physiological states, while the RAA was
sometimes inaccurate. Therefore, we also measured users’ trust
in our EMiRAs as measured by the Trust in Automated Systems
questionnaire [36].

Interview Feedback: For the qualitative measures, we used a
semi-structured interview after the experiment, asking the partici-
pants the questions shown in Tab. 2. Q1 and Q2 were designed to
query user preference, which can also reflect some insights from
users to help understand the questionnaire results. The Q3 was
designed to understand users’ concerns about privacy and trust in
technology. This was motivated by the need to detect user physio-
logical states in our study. Q4 and Q5 were designed to understand
the user’s expectations for creating MiRAs’ empathic perception
and response capabilities. The question Q4 was motivated by the
design of AAA’s speech structure in our study shown in Sec. 3.2,
where the AAA agent first reports users’ objective physiological
states detected by algorithms and sensor data, followed by an infer-
ence on their stress level based on the physiological states. Given
that our experiment primarily centered around the agent’s percep-
tion of users’ physiological states, and the three agent conditions
differed solely in speech behaviors, Q5 was tailored to investigate
further empathic responses within these agents.

4.6.2 Physiological Measures

We logged users’ EDA and PPG signals with markers indicating
baseline start/stop and game end. Offline analysis with Neurokit
toolbox [46] checked if EMiRAs’ awareness influenced these sig-
nals during the game.

After decomposing EDA into tonic and phasic components [9],
we segmented the data into baseline and game intervals. We cal-
culated the averaged SCL by subtracting baseline tonic SCL from
game data and averaged phasic Nonspecific Electrodermal Re-
sponses (NS.EDRs) [27].
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From PPG data, we derived Heart Rate Variability (HRV) fea-
tures, focusing on RMSSD and SDNN [60, 33], commonly used in
HRYV analysis.

5 RESULTS
5.1 Subjective Measures
5.1.1 Perceived Empathy

For the GodSpeed questionnaire, we only found significant differ-
ences in the animacy (see Fig. 4a) and perceived intelligence (see
Fig. 4b) subscales. For animacy subscale, a Friedman test ()(2(2)
= 9.810, p = 0.007) revealed an overall significant difference be-
tween the three agent conditions. However, the following Kendall’s
W test found only a small effect size (W = 0.204). The pairwise
Wilcoxon signed-rank tests with Bonferroni correction showed the
animacy rating in the AAA condition was significantly higher than
NAA (Z = -2.308, p = 0.021). Similarly, the overall rating for
perceived intelligence was significantly different between the three
agent conditions(xZ(Z) =12.7, p = 0.002), with a small effect size
(W = 0.265) by the following Kendall’s W test. Post-hoc tests fur-
ther revealed the perceived intelligence in AAA condition was sig-
nificantly higher than NAA (Z = -3.428, p < 0.001) and RAA (Z
-2.697, p = 0.007).

5.1.2 Social Connectedness

As shown in Fig. 4c, a Friedman test (12(2) =14.7, p < 0.001) re-
vealed significance between the three agent conditions on the I0S
questionnaire responses. A moderate effect size (W = 0.305) was
found by the following Kendall’s W test. The Post-hoc pairwise
Wilcoxon signed-rank tests with Bonferroni correction further re-
vealed the social connectedness in the AAA condition was signif-
icantly higher than NAA (Z = -3.090, p = 0.002) and RAA (Z =
-1.969, p = 0.049). The social connectedness in RAA was also
significantly higher than NAA (Z = -1.977, p = 0.043).

5.1.3 Trust

Fig. 4d illustrates the statistical tests on the trust in agents as mea-
sured by the Trust in Automated Systems Questionnaire. A Fried-
man test showed an overall significant difference between the three
agent conditions on the trust responses (y2(2) = 17.2, p < 0.001),
with a moderate effect size (W = 0.359) by the following Kendall’s
W test. Post-hoc tests further showed the overall trust in the AAA
condition was significantly higher than NAA (Z = -2.097, p =
0.036) and RAA (Z =-2.968, p = 0.003).

5.1.4 Social Presence

Fig. 5 shows plots for the Social Presence questionnaire subscales
with different significant main effects. For co-presence subscale,
we found a significant main effect through a Friedman test (y2(2)
=17.6, p < 0.001), and a moderate effect size (W = 0.366) through
a following Kendall’s W test. Post-hoc pairwise Wilcoxon signed-
rank tests with Bonferroni correction showed the co-presence in the
AAA condition was significantly higher than NAA(Z = -3.500, p
< 0.001) and RAA (Z = -2.483, p = 0.013).

The attentional allocation subscale also showed a significant
main effect (x2(2) = 17.6, p < 0.001), with a moderate effect size
(W = 0.366). Post-hoc tests further revealed the attentional alloca-
tion response in the AAA condition was significantly higher than
NAA (Z =-3.330, p < 0.001).

Similarly, the perceived message understanding subscale also
showed an overall significance between the three conditions ( x2(2)
=16.8, p < 0.001) with a moderate effect size (W = 0.349). Post-
hoc tests showed the AAA condition was significantly higher than
NAA (Z =-2.968, p = 0.003) and RAA (Z = -2.878, p = 0.004).

For the perceived affective understanding, a Friedman test (y>(2)
= 18.3, p < 0.001) showed an overall significant main effect with
a moderate effect size (W = 0.381). Post-hoc tests revealed that the
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Table 2: Interview questions and their motivations.

No. | Question

| Motivation

Q1 | Which agent do you like most, and why? User preference
Q2 | Which agent do you hate most, and why? User preference
Q3 | Are you glad to share your physiological data with a mixed reality agent to let it understand you better? Privacy and trust in technology
Q4 | Do you think the virtual human should accurately report your physiological state or further infer your | Empathic perceptions
emotional state?
Q5 | What behaviors do you expect from the virtual human in MR if it can understand your emotions? Empathic responses
Agent NAA EB RAA E] AAA Agent NAA B RAA EH] AAA
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Figure 4: Boxplots showing the subscales of Animacy and Perceived Intelligence from the GodSpeed Questionnaire, as well as measures of
social connectedness from the IOS questionnaire and trust in agents from the Trust in Automated Systems Questionnaire.

AAA condition had significantly higher perceived affective under-
standing than the NAA condition (Z = -3.321, p < 0.001). Further-
more, the RAA condition also had significantly higher perceived
affective understanding than NAA (Z = -2.878, p = 0.004). No
significant difference was found between the AAA and NAA con-
ditions.

Furthermore, we found the same trend in the perceived affective
interdependence subscale with a significant main effect (){2(2) =
10.4, p = 0.006). However, only a small effect size (W = 0.217)
was found by the following Kendall’s W test. Similarly, post-hoc
tests also showed the perceived affective interdependence in the
AAA condition was significantly higher than that in the NAA con-
dition (Z = -2.697, p = 0.007). Besides, the perceived affective in-
terdependence in the RAA condition was also significantly higher
than NAA (Z = -2.097, p = 0.036).

Lastly, for the perceived behavioral interdependence subscale, a
Friedman test revealed significance over three conditions (12(2) =
14.6, p < 0.001), with a moderate effect size (W = 0.304). Post-hoc
tests further revealed the AAA condition had significantly higher
perceived behavioral interdependence than NAA (Z = -3.090, p =
0.002) and RAA (Z = -2.086, p = 0.037).
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5.1.5

As shown in Tab. 2, Q1 and Q2 asked participants to rank the
most and least liked conditions. A Chi-Square Goodness of Fit test
yielded a significant difference against the most liked agent type
(x2(2) = 15.844, p < 0.001). However, no significant difference
was found on the most hated agent type (see Figure 6). Regarding
Q3, after analyzing the interview recordings, we classified the par-
ticipants’ attitudes into “Definitely yes” (41.7 %), “Definitely no”
(12.5 %), and “Depends” (45.8 %), while the responses to Q4 were
categorized into: “Just report accurate Physiological state”(41.7
%), “Just infer emotional state”(8.3 %), and “Report both”(50 %).
For the QS5, participants’ answers to this question were grouped into
(A) general richer verbal and non-verbal behaviors and (B) person-
alized empathic behaviors. We will discuss these results in Sec. 6.3.

Interview Feedback

5.2 Physiological Measures

We analyzed EDA tonic and phasic components, and calculated
HRYV based on collected PPG data.

Regarding EDA, the Shapiro-Wilk test showed the EDA tonic
feature SCL data violated normality, so we conducted the Friedman
test with the SCL data. However, no significant main effect of the
conditions was found (752(2) = 0.25, p = 0.882). Similarly, the
Shapiro-Wilk test also revealed the EDA phasic feature NS.EDR
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Figure 5: Boxplots of subscales from the Social Presence Questionnaire.
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Figure 6: Results of the preference on most liked and hated agents.

broke normality. No significant difference was found among the
three agent conditions with a Friedman test () 2y =1, p =0.607).

For HRYV, the Shapiro-Wilk test showed the HRV features of both
RMSSD and SDNN data violated normality. No significant main
effect of conditions on the RMSSD (x2(2) = 0.08, p < 0.959) and
SDNN data(xz(Z) = 0.674, p = 0.713) through the Friedman test.

6 DISCUSSION

The subsequent sections thoroughly examine the research outcomes
and experimental observations and further discuss some observa-
tions in the interview.

6.1

The results of perceived empathy-related measures partially sup-
port our H1. In RAA and AAA conditions, EMiRAs were able to
show awareness of user physiological states with different levels of
accuracy. Compared with the NAA, both RAA and AAA received
higher ratings on social connectedness, perceived affective under-
standing, and perceived affective interdependence. This may be be-
cause users perceived that the speech from RAA and AAA, reflect-
ing their physiological and stress states, implied an understanding
and detection of their emotional states by these agents. Consistent

Perceived Empathy
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with the findings of Desnoyers et al. [20] on the benefits of shar-
ing physiological states among individuals for fostering a sense of
connectedness, our study suggests that sharing physiological states
between humans and virtual humans may similarly enhance social
connectedness.

In addition to higher ratings in social connectedness and per-
ceived affection subscales of social presence, the AAA condition
also received significantly higher scores in animacy, perceived in-
telligence, trust, and all other aspects of social presence than the
NAA condition. The Animacy subscale focuses on the extent of life
in the agents, while the perceived intelligence subscale assesses the
intelligence in the agents’ human-like behaviors [7]. That is, the
AAA’s ability to precisely discern users’ physiological and emo-
tional states fostered a greater sense of human likeness, trust and
social presence, which is important for building empathy between
human and social agents [58, 26].

6.2 Human-Agent Social Interaction

The ratings of RAA and AAA on perceived intelligence, trust, so-
cial connectedness, and social presence subscales of copresence,
perceived message understanding, and perceived behavioral inter-
dependence partially supported the H2.

The AAA had higher perceived intelligence and trust ratings than
the RAA. These were in line with the findings presented by [75],
where an Al shopping assistant detecting user emotion with higher
accuracy led to higher perceived intelligence and more willingness
in consumers to follow the AI recommendations. Furthermore,
Gupta et al. [32] also underscored the significance of agent accu-
racy in delivering assistance information as a crucial factor in fos-
tering trust between users and agents. Our study also exemplifies
how the accuracy of empathic agents in conveying users’ physio-
logical states can enhance perceived intelligence and user trust.

Moreover, the AAA also had higher social connectedness and
social presence in copresence, perceived message understanding,
and perceived behavioral interdependence. The social connected-
ness result aligned with the preference results. As commented by
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P14, “I like the agent that reflected my physiological state correctly
and timely....”(Q1). For the RAA, P18 commented, “Once I found
it was wrong, I didn’t listen to him at all afterward.”(Q2). In ad-
dressing social presence, our study contributes to the literature by
demonstrating how the accurate awareness of human physiological
states by MiRAs impacts social presence. Previous findings regard-
ing MiRAs’ awareness of physical environment events, such as fan
wind [41] and objects dropping [61], have been shown to enhance
social presence. Combining our findings with previous research
on MiRAs’ virtual-physical interaction, we suggest that MiRAs’
perception of both physical events and human physiological states
contributes to fostering social presence.

No significant difference was found in the anthropomorphism
and likeability of the GodSpeed questionnaire and the physiologi-
cal measures. This could be because the three agent conditions had
the same virtual human appearance. The only difference was the
speech behavior, and the users’ physiological states might mainly
be influenced by the DroneRage shooting game, not the speech be-
havior. As reported by the P20, “... I don’t hate any of them...they
looked pretty similar...”(Q2). P08 said, “...I was overwhelmed by
the game and didn’t pay too much attention to the agent...”.

6.3 Privacy Concerns and Empathic Capabilities

Regarding the privacy and trust mentioned in Q3, the comments for
“Definitely yes” were “...It helps to let technology understand my
emotion, why not...” (P08) and “...it’s a bridge between the real
world and the game world because emotions are something that
games haven’t encompassed” (P16). The reasons for “Definitely
no” might relate to participants’ personalities and trust in technol-
ogy. For example, P17 commented, “I don’t think I need a virtual
human understanding my emotion.”. P23 commented, “I don’t be-
lieve Al technology can truly understand me... I don’t want people
to know my moods.”. The comments on “Depends” were mainly
concerned about private data safety. For example, PO5 said, “De-
pends; I would be glad to share my physiological data with the
virtual human only if the data privacy would be guaranteed.”. P02
mentioned, “...Depends on whether my data will be protected.”.

Regarding Q4, reasons for the I type were mainly because par-
ticipants treated the virtual human as a tool to monitor their physio-
logical state. For example, P20 said, “...I think the virtual human as
an Al tool should be stronger than a real human in some way, like
accurately detecting my physiological states.”. Some other partic-
ipants had privacy concerns about letting the virtual human detect
their emotional states. P10 said “...I don’t like the virtual human
reporting my emotional state.”. However, for the type II responses,
users thought they didn’t know the true meaning of the physiologi-
cal states so they preferred letting the machine tell them their emo-
tional states directly. For instance, P08 said “...just reporting phys-
iological states makes no sense to me. The virtual human should
directly tell me about my emotional state...”. Lastly, for the III type
responses, participants’ reasons were a combination of type I and
type Il reasons. For example, P21 reported that “...although I can
interpret the physiological states myself, I would like the virtual
human also infer my emotional states with some accuracy like over
80%.”. P11 reported, “... I prefer the virtual human report, both my
physiological state and the accuracy of detected emotional state...”.
Interestingly, we also found that some participants did not like the
virtual human feeling, which was super human-like or accurate in
detecting emotions. P14 commented, “...if the virtual human can
understand and respond to my emotion like a real human, I am
afraid I will emotionally bond to this virtual human ...”. P24 said,
“...I would feel it’s horrible if the agent is too accurate in detect-
ing my emotional state. I have no privacy in front of such a virtual
human...”.. This could be because of the uncanny valley effect [50]
and privacy issues.

In Q5, an example for the group (A) responses is

«

... the virtual
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human should have more variation of the tones, more body move-
ments, and facial expressions...” (P11). The P18’s comments, “...if
I am in a sad mode, I don’t expect the virtual human to change
me from unhappy to happy. I would prefer it to leave me alone...”,
exemplifies the group (B) expectations on personalized empathic
behaviors.

6.4

Based on our results, we identified design implications (DI) for fu-
ture EMiRAs in stress-inducing contexts like the DroneRage game:

Implications on EMiRAs’ Design

DI1. Using physiological sensors to enable EMiRAs to perceive
user physiological states helps build perceived empathy in
EMiRAs (based on H1).

DI2. Higher accuracy in detecting physiological states can further

improve social perception of EMiRAs (based on H2).

DI3. Users’ physiological data safety and privacy should be han-

dled properly (based on Q3).

DI4. Prioritize guaranteeing EMiRAs’ accuracy in detecting

physiological states over emotional states (based on Q4).

DIS. To enrich EMiRAs’ biofeedback loop, incorporate non-

verbal cues and personalized behaviors for more empathic

responses (based on QS).

7 LIMITATIONS

Our study has several limitations. First, the virtual human’s com-
munication lacks realism in both verbal and non-verbal aspects.
Second, integration between the MR agent and game modules was
suboptimal, resulting in occasional occlusion of drones by the vir-
tual human’s body. Third, we observed occasional mismatches be-
tween detected SCL changes and subjective user experiences. This
discrepancy stemmed from the gradual nature of slow SCL changes
and the algorithm’s comparison of current data with SCL readings
from 30 seconds prior. Finally, the simplicity of the game task and
reliance on a single physiological measure limit the generalizabil-
ity of our findings. Future research should address these limitations
and explore more complex scenarios with multiple physiological
indicators.

8 CONCLUSION AND FUTURE WORK

In this work, we studied how EMiRAs’ awareness of user physio-
logical states affects perceived empathy. Our user study compared
three virtual game companions with varying levels of physiologi-
cal awareness. Agents demonstrating awareness (RAA and AAA)
elicited higher perceived empathy, with AAA showing the most po-
tential for enhancing human-agent interaction. User interviews re-
vealed privacy concerns and considerations for implementing em-
pathic capabilities in MiRAs. No significant differences were found
in users’ physiological data.

In future studies, we aim to investigate the impact of EMiRAs’
intelligent capabilities, including awareness of both users’ physi-
ological states and physical events, such as door openings, phone
calls, or temperature fluctuations, on perceived empathy.
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