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aAuckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; bSTEM, The University of South Australia, Adelaide, 
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ABSTRACT 
Non-verbal cues like locomotion and posture influence users’ perceptions of Mixed Reality Agents 
(MiRAs). While Electroencephalography (EEG) captures cognitive responses, the influence of MiRAs’ 
locomotion and postures on brain activity remains underexplored. Additionally, few studies inte-
grate subjective and behavioral measures with EEG to evaluate these cues’ impact on social per-
ception. To address this, we conducted a within-subject study where participants played Gobang 
against three virtual agents in mixed reality: 1) a speech-only agent (S), 2) an embodied agent 
with speech and locomotion (S 1 L), and 3) an embodied agent with speech, locomotion, and 
posture (S 1 L 1 P). Results showed the S 1 L 1 P agent had higher engagement measured by the 
questionnaire but a lower EEG-based engagement index at AF3 than the S 1 L agent. Besides, the 
S 1 L 1 P was also rated higher in social presence, engagement, and emotional arousal than the S 
condition; No behavioral differences were observed. We discuss how MiRAs’ locomotion and pos-
ture affect users’ social perception and provide design implications for future human-agent 
interactions.

KEYWORDS 
Virtual agents; EEG; 
engagement; mixed reality   

1. Introduction

Integrating Intelligent Virtual Agents (IVAs) into applica-
tions has significantly transformed the landscape of Human- 
Computer Interaction (HCI). IVAs are typically classified 
into two types: 1) Voice-only agents (Katsarou et al., 2023) 
with no embodiment, like Amazon Alexa,1 Microsoft 
Cortana,2 and Apple Siri,3 and 2) embodied agents (Yousefi 
et al., 2024) which possess a body, like Soul Machines’ con-
versational virtual characters4 and Non-Player Characters 
(NPCs) in computer games (Pretty et al., 2024). Despite the 
commercial success of voice-only agents, previous research 
has demonstrated that embodied agents can further enhance 
human-agent social interactions (Kruse et al., 2023; Mendes 
et al., 2024).

Therefore, we focus primarily on embodied agents in this 
work. IVAs embodied in the Mixed Reality (MR) environ-
ment are called Mixed Reality Agents (MiRAs) (Holz et al., 
2011), which inhabit users’ real-world environments. Unlike 
voice-only agents that communicate with users primarily 
through speech, MiRAs can further utilize non-verbal cues, 
such as facial expression, posture, and locomotion, to convey 
more complex social signals like emotions and behavioral 
intentions (Norouzi et al., 2020; Wang & Ruiz, 2021).

Specifically, locomotion and posture are two important 
non-verbal cues in MiRAs that could influence users’ social 
perceptions. For example, a virtual agent walking within the 
user’s immediate environment enhances the naturalness and 
intuitiveness of its behavior, thereby increasing its overall 

believability (Kim et al., 2018a). Additionally, postures pre-
sented by MiRAs have been shown to affect users’ willing-
ness to interact with these agents (Li et al., 2018).

Despite these findings, previous studies have predomin-
antly relied on subjective and behavioral measures to assess 
the impact of MiRAs’ non-verbal cues on social perception. 
Since all cognitive activities are driven by the brain, physio-
logical measures like Electroencephalography (EEG), which 
records electrical brain activity, have been used to assess 
cognitive load (Kumar & Kumar, 2016), trust in virtual 
assistants (Gupta et al., 2020), and engagement in gaming 
(Pope et al., 1995; Ruqeyya et al., 2022). In the human-agent 
interaction domain, EEG has also been employed to monitor 
real-time user engagement, allowing robots to adapt their 
behaviors to recapture users’ diminishing attention levels 
(Szafir & Mutlu, 2012; Vrins et al., 2022). However, it 
remains unclear how virtual agents’ non-verbal cues, such as 
posture and locomotion in mixed reality spaces, influence 
user engagement as measured by EEG.

In this work, we conduct a within-subjects user study to 
explore how the IVAs’ locomotion and postures influence 
the user’s brain activity and feelings of social presence and 
engagement in MR. Inspired by the iCat affective chess 
robot, which engages users in a turn-based chess game 
where the agent strategizes and plays against users (Leite 
et al., 2009), we developed a turn-based Gobang game in 
MR. Gobang was chosen because it provides a simple yet 
strategic framework for evaluating user interactions with 
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virtual agents, allowing us to investigate the impact of non-
verbal cues, such as locomotion and posture, in a dynamic, 
competitive setting. Similar to Kim et al. (2018a), which 
used a speech-only agent as a comparison condition to dem-
onstrate the benefits of MiRAs, we studied three corre-
sponding types of virtual agents: 1) Speech-only agent (S), 
2) Embodied agent with Speech and Locomotion (S 1 L), 
and 3) Embodied agent with Speech, Locomotion, and 
Postures (S 1 L 1 P). Our results indicate that locomotion 
and postures enhanced social presence and social engage-
ment but reduced the EEG-measured engagement index. 
Our work contributes in three ways:

C1. We explore the effects of MiRAs’ non-verbal cues on 
user engagement by integrating EEG with subjective 
and behavioral measurements;

C2. We present a user study to examine the influence of 
MiRAs’ locomotion and postures on users’ social 
perceptions;

C3. We provide novel design implications for human-agent 
interaction in MR, derived from our comprehensive 
analysis of experimental results and observations.

The remainder of this paper is organized as follows: 
Section 2 reviews related work and highlights the novelty of 
our research. Section 3 introduces the system used for the 
experiment, followed by the user study design in Section 4. 
In Section 5, we present the experimental results, while 
Section 6 provides a discussion of the findings. Section 7
outlines the limitations of the study, and finally, Section 8
offers conclusions and suggests directions for future work.

2. Related work

In this study, we investigate how MiRAs’ locomotion and 
postures affect social perception within the context of a 
board game. To establish the foundation for our research, 
we review related work in three key areas: 1) Non-verbal 
cues in embodied virtual agents, 2) virtual agents in board 
games, and 2) EEG-based engagement index.

2.1. Non-verbal cues in embodied virtual agents

Non-verbal cues in embodied virtual agents, such as posture 
(Li et al., 2018), eye gaze (Kevin et al., 2018), facial expres-
sions (Milcent et al., 2022) and proxemics (Ye et al., 2021), 
can be used to enhance humanagent social interaction 
(Miller et al., 2019; Wang & Ruiz, 2021). For example, 
DeVault et al. (2014) designed a virtual therapist for an 
engaging face-to-face interview scenario where users felt 
comfortable talking and sharing information. To establish 
the relationship between the virtual therapist and the user, 
they considered facial expressions, gaze, gestures, and pos-
tures when designing the virtual agent.

Among the various non-verbal cues, posture is one of the 
most influential in embodied virtual agents. It can shape the 
agent’s personality (Antonio G�omez J�auregui et al., 2021; 
Ishii et al., 2020), enhance users’ sense of co-presence 

(Chang et al., 2022), and increase engagement (Kum & Lee, 
2022). For instance, Li et al. (2018) explored the effects of 
agent posture and embodiment on social distance in MR, 
finding that users maintained greater social distance from 
agents displaying open postures, yet were more willing to 
interact with them. Similarly, Randhavane et al. (2019) 
developed an algorithm to model perceived friendliness in 
Augmented Reality (AR) by adjusting an agent’s gaze, gait, 
and gestures such as head nodding and waving. This signifi-
cantly enhanced both friendliness and social presence. 
Chang et al. (2022) also found that embodied agents in 
immersive Virtual Reality (VR) with posture cues increased 
co-presence and captured more attention, as evidenced by 
EEG measurements. These studies demonstrate that the pos-
tures of virtual agents in 3D immersive environments (VR/ 
AR/MR) can significantly influence users’ social perceptions 
in various aspects, including social distance, perceived 
friendliness, social presence, co-presence, and attention. 
More relevant studies could be found in (Kruse et al., 2023; 
Norouzi et al., 2020; Yousefi et al., 2024).

In addition to posture, locomotion is a critical component 
of human-agent interaction, especially for virtual agents 
embodied in 3D immersive AR, VR, and MR environments 
(Holz et al., 2011; Nijholt, 2022; Norouzi et al., 2019). Like 
posture, locomotion can also influence users’ social percep-
tions. For instance, Kim et al. (2018a) found that a virtual 
agent walking in an AR space elicited higher social presence, 
engagement, and trust compared to a speech-only agent. 
Locomotion, which involves changes in spatial positioning, 
also affects proxemics, the physical distance users maintain 
from virtual agents during interactions (Huang et al., 2022; 
Lee et al., 2018; Miller et al., 2019). Moreover, locomotion can 
convey a virtual agent’s awareness of the virtual and physical 
environments, further enhancing its believability and improv-
ing user experiences. For example, Ye et al. (2021) introduced 
a real-time position-aware locomotion method for room-scale 
VR, while Kim et al. (2017) demonstrated that a virtual 
human in AR avoiding physical obstacles like a chair 
increased social presence and influenced users’ behaviors, lead-
ing them to avoid walking through the virtual human’s space. 
In short, locomotion in embodied virtual agents affects users’ 
social perceptions and behaviors.

Although previous research has investigated the effects of 
postures and locomotion in MiRAs, they primarily employed 
subjective and behavioral measurements. In our work, we 
evaluate the effects of MiRAs’ locomotion and postures by 
integrating subjective, behavioral, and physiological measure-
ments (i.e., EEG). We use locomotion to indicate the virtual 
agent’s intended spatial positions in the MR space and express 
the virtual agent’s emotional state through postures. With the 
designed locomotion and postures, we mainly focus on 
manipulating user engagement in the Gobang game and meas-
uring the engagement using both questionnaires and EEG.

2.2. Virtual agents in board games

Board games, typically multi-player and turn-based, have 
been widely used as environments for studying human-agent 
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interactions (Barambones et al., 2023; Damette et al., 2024; 
Piette et al., 2021). For instance, Sun et al. (2022) imple-
mented the Colored Trails board game in VR to investigate 
how a virtual robotic opponent’s theory of mind abilities 
influenced users’ delegation behavior, requiring participants 
to negotiate with the agent to succeed. Such a structured, 
rule-based environment provides an ideal testbed for explor-
ing various aspects of human behavior in interaction with 
virtual agents.

In board games, virtual agents can serve either as oppo-
nents, competing against users, or as assistants, helping users 
win the game. For instance, Eichhorn et al. (2021) designed 
virtual chess opponents that train players in strategies on a 
tablet screen, while Allameh and Zaman (2021) developed a 
virtual assistant on screen for The Royal Game of Ur, that 
could answer rule-related questions, provide strategic move 
suggestions based on the player’s state, and notify players of 
important game events. Because of the clear rules and struc-
tured nature of board games, these virtual agents can effect-
ively monitor game flow, enhancing user engagement.

In contrast to screen-based virtual agents, those embod-
ied in VR, AR, or MR environments have been integrated 
into board games, providing a more immersive and inter-
active experience (Lee et al., 2021; Liu et al., 2023; Torre 
et al., 2000). For example, Lee et al. (2018) introduced a vir-
tual human in AR that sits at a physical table to play a 
tabletop game, where each player takes turns moving their 
tokens along designated spots on the shared surface. This 
setup enhances the sense of presence and facilitates more 
natural interactions between players and the virtual agent.

Despite advancements in integrating AR/MR virtual agents 
into board games, the limited field of view (FoV) of headsets 
has frequently been reported to impair user experience, as 
users cannot view the virtual agent’s entire body while focus-
ing on the game board (Lee et al., 2018; Wang et al., 2019). 
One potential solution is to employ miniature virtual agent 
bodies (Kim et al., 2020; Wang et al., 2019). Alternatively, 
scaling up the board to a giant size placed on the ground 
allows players to walk on top, thereby enhancing visibility and 
interaction (Bocchi et al., 2024; Mouton et al., 2017).

In our study, we integrated miniature virtual opponents 
into a scaled-up Gobang board game (Li et al., 2022) in the 
MR environment, enabling agents to navigate and place 
pieces on the enlarged game board. The rationale for select-
ing Gobang as a testbed is further discussed at the beginning 
of section 3 and subsection 3.2.

2.3. EEG-based engagement index

To measure user engagement, we recorded their brain activity 
using EEG. EEG has previously been used to measure cogni-
tive load (Antonenko et al., 2010), visual attention (Busch & 
VanRullen, 2010), and engagement (McMahan et al., 2015). 
Pope et al. (Pope et al., 1995) developed an EEGbased engage-
ment index based on the ratio of beta power (13-22 Hz) and 
the sum of alpha power (8-13 Hz) and theta power (4-8 Hz). 
They applied it in a closed-loop system to adjust the user task 
allocation to maintain higher task engagement. Similarly, a 

further study (Freeman et al., 1999) extended this work in two 
experiments with larger sample sizes and more detailed obser-
vations. Their results confirmed the effectiveness of this EEG- 
based engagement index.

The EEG-based engagement index has also been widely 
used to measure human cognitive states in later research 
(Berka et al., 2007; McMahan et al., 2015; Nuamah & Seong, 
2018; Szafir & Mutlu, 2012). For example, Berka et al. 
(2007) measured engagement and workload using EEG dur-
ing different types of standard cognitive tests. They argued 
that the EEG engagement index reflects information-gather-
ing, visual processing, and attention allocation, while the 
EEG workload is sensitive to working memory load, integra-
tion of information, and analytical reasoning. Szafir and 
Mutlu (2012) designed an adaptive agent that could monitor 
student attention in real time using the EEG-based engage-
ment index. Similarly, McMahan et al. (2015) used the EEG- 
based engagement index to measure players’ cognitive 
engagement during video games. They found that the 
engagement index was effective in differentiating high-inten-
sity game events from general gameplay. Moreover, Nuamah 
and Seong (2018) identified significant differences in task 
engagement indices derived from EEG signals recorded from 
participants performing five distinct cognitive tasks. In con-
clusion, the EEG-based engagement index has been proven 
to be effective in measuring cognitive engagement.

Although there are other ways to measure engagement 
based on EEG signals (Coelli et al., 2015), in this paper, we 
used the EEG-based engagement index proposed by Pope 
et al. (1995) to observe participants’ cognitive engagement as 
it has been widely used in later research (Castiblanco Jimenez 
et al., 2022; Dehais et al., 2020; Rajendran et al., 2022).

In summary, locomotion and postures are crucial non- 
verbal cues in MiRAs, yet prior research has largely relied 
on subjective and behavioral measures to assess their impact. 
Board games provide a structured and rule-based environ-
ment that is ideal for studying human interactions with vir-
tual agents. EEG effectively captures users’ cognitive 
activities and engagement levels, offering valuable physio-
logical insights. In this study, we integrate subjective, behav-
ioral, and physiological (EEG) measurements to explore how 
MiRAs’ locomotion and postures influence users’ social per-
ceptions within a Gobang game environment.

3. System overview

Our system primarily consists of the IVAs and the MR 
Gobang game, where the IVAs compete against users in the 
MR Gobang game on the HoloLens 2. Previous studies have 
noted that the limited field of view (FoV) of the HoloLens 2 
impacts users’ experiences with virtual agents (Lee et al., 
2021; Li et al., 2018), and that miniature embodied agents 
walking around can appear more approachable and relatable 
to users (Wang et al., 2019). Besides, the limited FoV may 
lead to more user head movements, which could cause more 
noise in the EEG signals. Therefore, in our system, we 
designed the embodied agent as a miniature character cap-
able of navigating the game board and placing chess pieces, 
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emulating a player’s actions in a giant chess game (Bocchi 
et al., 2024).

In the following subsections, we will describe the IVAs, 
the MR Gobang game, and the system implementation.

3.1. The intelligent virtual agents

In our study we used three difference IVAs: 1) A Speech- 
only agent (S), 2) an embodied agent with Speech and 
Locomotion (S 1 L), and 3) an embodied agent with Speech, 
Locomotion and Postures (S 1 L 1 P).

IVA S (Speech): The speech-only agent was designed to inter-
act with people through voice only, similar to the Speech 
agent used by Kim et al. (2018a), we also pre-generated the 
speech using the IBM Watson Text-to-Speech service5 before 
interacting with the virtual agent to avoid any network delay 
during the real-time text to speech generation (Chang et al., 
2022). To increase the speech richness, we prepared syn-
onymous sentences for the same speech intention and ran-
domly picked one when a specific event requiring speech 
intention happened. For example, when the virtual agent 
sees the user (event), it would greet the user (speech inten-
tion) by randomly picking one speech sample from “Hi, how 
are you”, “Hello, nice to meet you” or “Hi, what’s up”. We 
used a unique keyword to describe the speech intention (e.g., 
“greeting”) and mapped the keyword with a value list con-
sisting of several synonymous sentences. All of the pre-gen-
erated audio clips were named with the combination of a 
unique keyword and an index of a sentence in the synonym-
ous sentence list. For example, the names “greeting1”, 
“greeting2”, and “greeting3” could represent three greeting 
audio clips generated with three synonymous sentences.

IVA S 1 L (Speech and Locomotion): The speech and loco-
motion agent was designed based on the IVA speech condi-
tion, but included an embodied agent. The virtual agent had 
a full virtual human body and could walk toward target 
points with walking animations. By default, the virtual 
human kept facing the users with a slight body movement 
to avoid an impression of stiffness. When the virtual agent 
starts walking, it turns the body to face the target place and 
then walks towards the target. Once the virtual agent arrives 
at the target point, it turns around to face the user. The vir-
tual character’s walking behavior primarily utilizes a 
Mixamo6 -generated walking animation and involves pos-
itional adjustments over time using the DoTween7 Unity ani-
mation plugin. These adjustments are computed by dividing 
the distance between the character’s starting and target posi-
tions by a constant speed value, ensuring smooth movement 
at a consistent pace. The virtual agent could also gaze at the 
user to maintain mutual gaze while being looked at, which 
was designed to enhance the realism of the interaction 
(Gregory et al., 2021). We used the same method as shown 
in Chang et al. (2022) to generate the virtual character 
model. We also used the Lipsync visemes8 to synchronize 
the lip movement with the speech sample.

IVA S 1 L1P (Speech, Locomotion and Posture): The 
speech, locomotion, and posture agent was based on the 

IVA Sþ L, but also using postures to express anger, happi-
ness, sadness, thinking behaviors and a neutral expression 
as is illustrated in the Figure 1. Like the walking anima-
tion, all of these posture animations were also downloaded 
from Mixamo.

Figure 1. Examples of various postures of the Sþ Lþ P agent: a) greeting pos-
ture at game start, b) looking around to think about where to place the piece, 
c) folding arms and tapping the left foot tips to push users, d) neutral talking 
posture when the result is tie, e) victory posture to express happy emotion 
when the agent wins the game, and d) looking down to the ground with feet 
tips waving back and forth to express sad emotions when the agent loses the 
game.

4 Z. CHANG ET AL.



3.2. MR Gobang game

The Gobang game is a turn-based game where two players 
play against each other, one playing white, the other black. 
The two players take turns to place their pieces and try to 
make a line of five consecutive pieces horizontally, vertically, 
or diagonally to win (see Li et al., 2022 for detailed rules). 
All possible results of this game for a player can be a win, 
loss, or tie. Among various board games, the Gobang game 
presents a unique balance between simplicity and strategic 
depth. This balance makes Gobang particularly suitable for 
examining nuanced interactions between users and IVAs 
without the complexities introduced by more elaborate game 
mechanics.

We developed an MR Gobang game based on the 
AlphaZero-Unity9 and MixedRealityToolkit-Unity10 open 
source projects in GitHub. The AlphaZero-Unity project 
trained Artificial Intelligence (AI) models based on 
reinforcement learning, and it also combined the Monte 
Carlo Tree Search (MCTS) (Wang et al., 2021) to generate 
strategies for the computer to play against a human player. 
The MixedRealityToolkit-Unity project provided support for 
MR interactions such as using bare hands and eye gaze 
tracking, and so on. In our MR Gobang game, a user wear-
ing the Microsoft HoloLens2 played against the AI on a vir-
tual chessboard (see section 4.3 for detailed interaction 
description). We captured the users’ eye gaze behavior and 
EEG signals while they were playing the game.

3.3. Implementation

We developed the IVAs and MR Gobang game in Unity 
2021.3.18f on a desktop powered by an Intel(R) Core i7- 
12700F CPU and NVIDIA GeForce RTX 3070 GPU. We 
used the Microsoft HoloLens2 to display and interact with 
the MR environment. To make use of the computation 
resources on the desktop, we utilized the Mixed Reality 
Toolkit 2 (MRTK2) Holographic remoting11 mode to stream 
virtual content from the desktop to the Hololens2 in real- 
time, using a USB cable connection. We also used the 
Hololens2 headset to capture the user’s eye gaze and gesture 
input as well.

For the EEG signal capture, we moved the 8 dry EEG 
electrodes from Unicorn wireless EEG-headset12 to a 32 
channel naked g.tech cap13 with all original electrodes 
detached. The electrode layout of the 8-channel Unicorn 
EEG headset consisted of Fz, C3, Cz, C4, Pz, PO7, Oz and 
PO8. After being moved onto the g.tec headset, the relevant 

electrodes were AF3, P7, P3, O1, O2, P4, Pz, and Cz. We 
made this change because the 8 electrode positions on the 
Unicorn cap were not at the desired location while the 
g.tech cap had those locations available (see 4.5 for selecting 
EEG electrode positions). All of the electrodes worked at a 
sampling rate of 250 Hz. we used the Unicorn Suite Hybrid 
Black software14 to check the connection state of each elec-
trode and control the EEG data streaming based on the Lab 
Streaming Layer (LSL) library15. We also used the LSL in 
Unity to capture and store the EEG data. We added event 
markers to the EEG signals at specific time points, such as 
when the game started and stopped when the user or the 
virtual agent placed a piece and when the virtual agent 
started speaking or moving.

4. User study

In this section, we present the experimental design, set-up, 
task, procedure, and measurements for our user study.

4.1. Experimental design

To explore the effects of the IVAs’ locomotion and postures 
on social presence and engagement, a within-subjects study 
was designed where participants played the MR Gobang 
game with three different agent conditions:

S: As a baseline, the virtual agent had no visual representa-
tion and used speech only (see Figure 2a)). At the begin-
ning of the game, the virtual agent would greet the 
participant and invite him/her to play the Gobang game. 
During the game, when the participant did not play a piece 
for over 6 seconds, the virtual agent would encourage the 
participant by saying, “You are playing so slow. Please 
move faster” or other similar sentences. When it was the 
virtual agent’s turn to play the chess, a black piece would 
be generated within one second on the board. At the end 
of the game, the virtual agent would speak to express emo-
tions based on the game’s result. For example, if the virtual 
agent won, it would be happy and say “I’m on top of the 
world! victory is mine!”. If the virtual agent lost the game, 
it would express a sad emotion by saying “I’m really disap-
pointed that I lost!”. When the game was drawn, the vir-
tual agent would be neutral about the result by saying 
“Well, we both gave it our best shot!”. To increase the 
diversity of the speech content, we prepared multiple syn-
onymous sentences for each emotional state.

Figure 2. Three virtual agent conditions and hardware setup: a) Speech only agent, b) embodied agent with both speech and locomotion, c) embodied agent with 
speech, locomotion, and postures, and d) a participant wearing EEG headset and Hololens2 playing the Gobang game against the virtual agent in Mixed Reality.
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S 1 L: Based on the S configuration, this agent also had a 
virtual human body standing at the center of the Gobang 
game board when the game started. During the game, 
when it came to the virtual agent’s turn to play, it would 
walk towards the target position before a new black piece 
was generated, as is shown in Figure 2(b). Once the virtual 
agent stopped walking, it would turn to face the partici-
pants and talk to them. The virtual agent’s body was semi- 
transparent to allow the player to place pieces behind it if 
needed.

S 1 L1P: Based on the Sþ L condition, the agent also had 
postures to express thinking behavior and emotions based 
on the game state. For example, during the game, the vir-
tual agent could look around the board before starting to 
walk as if thinking about where to place the next piece. 
While the virtual agent was encouraging the participant to 
play, it would have two arms folded and the left foot tip- 
tapping on the ground to show its impatience (see Figure 
2(c)). At the end of the game, if the virtual agent won, it 
would show a victory posture while speaking to express 
happiness. When the virtual agent lost the game, it would 
show sad emotion by looking down and kicking the 
ground slowly but repeatedly with the right leg. However, 
when the result was drawn, the virtual agent would just 
show neutral emotion with two hands waving naturally in 
front of the body while talking.

We collected data from 16 participants (10 male and 6 
female) with ages ranging from 20 to 33 years old 
(M¼ 27.56, SD¼ 3.56) from a university campus. 
Participants were recruited based on their familiarity with 
English and their willingness to wear both an EEG cap and 
an MR headset. Eight of them reported they had no experi-
ence in using their hands to interact with virtual content in 
AR/VR/MR, seven of them reported that they had little 
experience (i.e., semesterly/annually), and one participant 
reported that he often uses this interaction mode (i.e., daily/ 
weekly/monthly). Ten rated themselves as a novice for the 
Gobang game, followed by four people at the intermediate 
level and two as advanced. None rated themselves as experts 
or players who had never played the game. Eight of them 
reported that they had little experience interacting with 
IVAs like Amazon Alexa, Microsoft Cortana, Apple Siri, etc. 
Five people reported they often used such agents, while 
three said that they had never used any agents like this. We 
used a balanced Latin Square to counterbalance the order of 
conditions and reduce the learning effect.

In the user study, we mainly investigated the following 
research question: How do the virtual agent locomotion and 
posture influence the user’s social perception and engagement?

To address this research question, we formulated two 
main research hypotheses, each with two sub-hypotheses, 
based on our experimental design outlined above. Our 
research hypotheses were as follows:

H1a: Compared to a speech-only virtual opponent, 
incorporating locomotion in the virtual agent can enhance 
human-agent social interaction as indicated by the subjective 
and behavioral measurements presented in Section 4.5.1 and 

4.5.3, such as social presence, engagement, gaze duration 
proportion, and task performance.

H1b: Combining locomotion and postures for the virtual agent 
can further improve the social perception as demonstrated by 
the measurements presented in Section 4.5.1 and 4.5.3.

H2a: Compared to a speech-only virtual opponent, 
incorporating locomotion in the virtual agent can increase the 
EEG-based engagement index (see Section 4.5.2).

H2b: Combining locomotion and postures for the virtual agent 
can further increase the EEG-based engagement index (see 
Section 4.5.2).

We formulated H1, including H1a and H1b, based on 
insights from the literature review (see Section 2.1). For H2, 
including H2a and H2b, we hypothesized that if H1 was 
confirmed in our experimental design, corresponding signifi-
cant effects would also be observed in the EEG signals.

4.2. Experimental setup

The experiment was conducted in an isolated experiment 
room. As shown in Figure 3, the participant wore an EEG 
cap and Hololens 2 headset (see Figure 2(d)) and faced the 
wall in front of the experiment PC, which was used for run-
ning the MR Gobang game application. Through the 
Hololens headset, the participant could see a 2 m�2m virtual 
square board lying on the floor with a virtual human stand-
ing at the center and facing the participant. The nearest 
edge of the chessboard to the participant was around 0.8 m 
away. A second Questionnaire PC was used in the room 
corner to fill in questionnaires after each session.

4.3. Experimental task

In the experiment, the participants played the MR Gobang 
game against different virtual agents under different study 
conditions. As shown in Figure 4, after the program started, 
the virtual agent began interacting with the participants by 

Figure 3. Experimental setup. A participant with EEG and Hololens 2 headset 
stands facing the wall. Through the Hololens headset, the participant could see 
a 2 m�2m virtual square board on the floor with a virtual human standing at 
the center facing the participant. The nearest edge of the chessboard to the 
participant was around 0.8 m away.
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greeting them verbally. Then the virtual agent would invite 
the participants to play the Gobang game and ask whether 
they were ready. Once the participants verbally replied to 
the virtual agent, the game started, triggering the EEG data 
recording and eye gaze behavior logging functions.

During the game, the virtual agents always played the 
black piece and moved first while the participants played the 
white piece. The participant controlled a virtual beam shot 
from the center of their palm to select the target position on 
the board where they wanted to place their piece. When the 
beam hits the board, there is a circle cursor to indicate the 
position. Once the cursor was moved close to a cross-dot on 
the chessboard, the cross-dot would be highlighted with a 
virtual rectangle to indicate the target dot’s selection state. 
Once the participant decides to put a white piece at the cur-
rently selected dot, he/she only needs to tap with his/her 
thumb and index fingers. The user’s goal was to win against 
the virtual agent.

Once the game finished, the virtual agent responded to 
the result based on its designed features (see section 4.1). 
After the virtual agent’s response, the game ended.

4.4. Experimental procedure

Once the participants entered the experiment room, they 
were guided to sit in front of the questionnaire PC to 
answer questions and were provided with the consent form. 
Once they agreed to participate in the experiment, they were 
asked to switch off all their electronic devices, such as 
phones and smartwatches, to reduce interference of the EEG 
signal during the experiment. They were asked to fill in a 
demographic questionnaire. Then, they were placed in 
another chair facing a wall. This chair was placed close to 
the experiment PC to run the MR Gobang game. Then the 
participants donned a Hololens2 headset and went through 
the eye calibration procedure to calibrate their eye gaze with 
the headset. After the eye gaze calibration, the participants 
were given three training opportunities to play the MR 
Gobang game. This was done without showing any agent 
cues to get familiar with basic game rules and using the 
dominant bare hand to place virtual pieces. They were asked 
to stand up before playing the game.

After the training, the experimenter helped the partici-
pants put on the EEG headset, followed by the Hololens2 
headset. We checked the EEG electrode connection state 
and the EEG signals (see section 3.3). When the EEG signals 
stabilized, we started the experimental task where the par-
ticipant was asked to play against a virtual agent in the MR 
Gobang game.

Before the experimental task, the participants were asked 
to stand still with their eyes closed and heads facing for-
ward. As they heard the virtual agent’s greeting voice, the 
task started (see section 4.3 for a detailed task description). 
After each task session, the participants were asked to fill 
out four questionnaires as presented in section 4.5.1. 
Participants were given a 1-minute rest after completing the 
questionnaires before starting the next condition.

Each participant took three trials in total, and the whole 
experiment lasted around 80 minutes. After the experiment, 
a semi-structured interview was conducted to understand 
the participants’ experience and perceptions of the virtual 
agent through the user study.

4.5. Measurements

4.5.1. Subjective measurements
Social engagement. Inspired by research in Human-Robot 
Interaction (HRI) that explores engagement between users 
and social robots (Jung et al., 2023; Riedmann et al., 2024), 
we were also interested in how our different virtual agent 
designs influence users engagement with the virtual agents. 
As presented in Sidner et al. (2004), engagement is “The 
process by which two (or more) participants establish, main-
tain and end their perceived connection.” Later, Corrigan 
et al. (2013) further identified this type of engagement as 
social engagement. In our work, we used the questionnaire 
from Leite et al. (2014), which was developed based on the 
social engagement concept to measure the user’s social 
engagement with the virtual agent.

Social presence. To understand the impact of virtual agent 
locomotion and postures on users’ feelings of social presence 
with the agent, we measured the social presence using ques-
tionnaire presented in Harms and Biocca (2004), which con-
sists of six subscales: co-presence, attentional allocation, 
perceived message understanding, perceived affective under-
standing, perceived affective interdependence, and perceived 
behavioral interdependence.

Emotional arousal and valence. We further examined the 
potential influence of the embodied virtual human’s locomo-
tion and postures on users’ emotional responses. So we used 
the Self-Assessment Manikin (SAM) Valence Arousal ques-
tionnaire (Lang, 1995) to measure users’ emotional arousal 
and valence.

NASA-TLX weighted workload. We also used the NASA- 
TLX questionnaire (Hart & Staveland, 1988) to assess users’ 

Figure 4. Events in the game process. Each bar represents one event, and these events happen one after another from left to right. The distance between each 
other doesn’t mean the time length. The “pushing” and “thinking” are highlighted with dashed lines, representing these two types of events are not always trig-
gered. Except for “program start” and “program end”, other events were annotated as markers in EEG recording.
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overall workload while they played the Gobang game against 
different virtual agents.

Interview questions. We conducted a short semi-structured 
interview after all the experiment condition trials to under-
stand the participants’ experience and perceptions of the vir-
tual agent through the user study. The interview questions 
and motivations are shown in Table 1. The Q1 and Q2 were 
designed to understand the user’s preference for different 
agent conditions. The Q3 was designed to understand the 
user’s perception of the virtual agent’s emotional cues. 
Although Q4 was not directly related to the primary 
research questions, it was designed to gauge participants’ 
preferences regarding the agent’s role in the game. In the 
current experiment, the agent acted as an opponent. To clar-
ify the assistant role for participants, we explained that the 
agent would have the same appearance and could also walk 
on the chessboard to suggest positions when asked. We 
expected the answers to Q4 could help us figure out the 
potential relationship between users’ skill level and their 
preference for the agent’s role in the game, which could be 
useful for future research.

4.5.2. Physiological measurements
EEG-based engagement index. As illustrated in Figure 5, we 
collected the raw EEG data from the AF3, P7, P3, O1, O2, 
P4, Pz, and Cz electrodes. The P3, P4, Pz, and Cz were 
selected according to the indices of operator engagement 
introduced in Pope et al. (1995), while the AF3 and P7 elec-
trodes were chosen because these two electrodes were shown 
effective in capturing user engagement in a video game 
study (Ruqeyya et al., 2022). Furthermore, the O1 and O2 
electrodes were also selected because the occipital lobe was 
related to vision processing (Malach et al., 1995). As shown 
in Section 2.3, we used the EEG engagement index formula 
recommended by Pope et al. (1995) to check the partici-
pants’ cognitive engagement during the game. The formula 
is as follows: 

EEG-based engagement index ¼
b

aþ h
(1) 

The b; a; and h bands were originally combined in Pope 
et al. (1995) by summing the relative frequency band power 
calculated from the Cz, Pz, P3, and P4 electrodes. In 
addition to this combined approach, other studies have cal-
culated the EEG-based engagement index using single-elec-
trode data from various brain regions, such as the frontal, 
occipital, parietal, and temporal lobes (Alimardani et al., 
2021). In our study, we examined the EEG-based engage-
ment index using both combined electrode data and single- 

electrode data to explore the differences in engagement 
between different agent conditions.

Artifacts in the EEG data can be caused by wires, eye 
blinking, muscle movement, and electrode movement 
(Chang et al., 2022; Ruqeyya et al., 2022). To reduce these, 
we first applied a bandpass filter (1�40Hz), followed by 
manually checking each participant’s EEG signals per condi-
tion and removing bad data segments using the MNE- 
Python (Gramfort et al., 2013). In total, 6.84% of the data 
was identified as bad and subsequently removed. Then, we 
chose the 1-second data before the “Greeting” event marker 
(see Figure 4) as a baseline and applied baseline correction16

to normalized the raw EEG. After the baseline correction, 
we chunked the data between the “Greeting” marker and 
the “Game end” marker into 1-second length epochs, with 
which we further calculated the Power Spectral Density 
(PSD) for each frequency band in the equation 1 using the 
Welch method (Welch, 1967). We finally averaged the PSD 
values for each frequency band across all epochs to calculate 
the EEG-based engagement index for each participant and 
each condition. Due to technical reasons, three participant’s 
EEG data (2 male, and 1 female) was not recorded correctly 
and excluded from the EEG data processing.

4.5.3. Behavioral measurements
Gaze duration (GD) proportion. To further understand the 
user’s visual attention allocation in the Sþ L and Sþ Lþ P 
conditions, we measured the user’s eye gaze behavior by log-
ging the start time (tstart) and stop time (tstop) when users 

Table 1. Interview questions and motivations.

No. Interview question Motivation

Q1 Which agent did you like the most, and why? User preference
Q2 Which agent did you hate the most, and why? User preference
Q3 In which condition did you perceive the strongest emotional cues? Emotion perception
Q4 Do you prefer competing against the agent or having the virtual agent assist you in the game? Agent role preference

Figure 5. EEG sensor positions. We calculated the EEG-based engagement 
index using data from these sensor positions (Alimardani et al., 2021; Pope 
et al., 1995).
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looked at either the board (GDchessboard) or agent body separ-
ately. Based on the GDagent and GDchessboard; we further cal-
culated the agent GD proportion (see formula 2), which 
means the proportion of time duration participants gazed at 
the virtual human body. For the agent GD proportion, we 
didn’t consider the S condition because the virtual agent 
didn’t have a virtual body in this condition.

Gazing Duration ðGDÞ ¼ tstop − tstart (2) 

Agent GD proportion ¼
Pn

i¼1GDagent
Pn

i¼1GDagent þ
Pn

i¼1GDchessboard
� 100%

(3) 

where i means the participants index

Player average speed. We measured the player’s average speed 
by logging the start time when the game transitioned to the 
participant’s turn and the stop time when the participant com-
pleted their move. Similar to the intention of capturing users’ 
eye gaze behaviors, we analyzed the player’s average speed to 
examine whether the virtual agent’s body attracted more atten-
tion, potentially leading to a longer time for each move.

Rounds of play. We also logged the number of rounds of play 
to understand how the virtual agent’s behavior influenced the 
overall game experience. As described in Section 4.3, the agent 
always moved first, so the number of rounds of play was the 
same as the number of moves the participant made.

Task performance. Besides capturing user attention allocation 
as measured by the eye gaze behavior, player average speed, 
and task completion time, we also logged the task perform-
ance to understand how well participants performed in the 

game under different agent conditions. The task performance 
result could be a user win, user loss, or tie.

Task completion time. We logged the task completion time 
to understand how the virtual agent behavior influenced the 
overall task completion time. The task completion time was 
calculated as the time from the game start to the game end.

5. Results

5.1. Subjective measurements results

5.1.1. Social engagement
The Shapiro-Wilk test showed the engagement questionnaire 
data violated the normality assumption in the Sþ LþP 
(p¼ 0.031) condition. As shown in Figure 6, the Friedman 
test indicated there was a significant difference among the 
three agent conditions (v2ð2Þ ¼ 11:92, p ¼ 0:0026) with 
moderate effect size (W¼ 0.372). The pairwise Wilcoxon 
signed-rank tests with Bonferroni correction revealed that 
the engagement in the Sþ Lþ P was significantly higher 
than that in the S condition (Z¼−2.576, p¼ 0.01) and the 
Sþ L condition (Z¼−2.044, p¼ 0.041). No other significant 
difference was found in other pairwise comparisons.

5.1.2. Social presence
The Shapiro-Wilk test showed that the social presence data 
in S (p ¼ 0:648Þ, Sþ Lðp ¼ 0:541Þ and Sþ LþP (p¼ 0.580) 
were all normally distributed. Mauchly’s test indicated the 
sphericity assumption was also met (W¼ 0.739, p¼ 0.12). 
As shown in Figure 7, we saw overall a significant difference 
across the three experimental conditions using the repeated 
ANOVA ðFð2, 30Þ ¼ 7:607, p ¼ 0:002, g2

g ¼ 0:15Þ: The Post- 
Hoc pairwise t-tests with Bonferroni correction showed that 

Figure 6. Results of the engagement questionnaire. (5-point Likert Scale from 1 
to 5; the larger solid dot in each condition represents mean value; Statistical 
significance: � (p < 0:05)).

Figure 7. Results of the social presence. (5-point Likert Scale from 1 to 5; the 
larger solid dot in each condition represents mean value; Statistical significance: 
� (p < 0:05), �� (p < 0:001)).
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the social presence in the Sþ Lþ P condition was signifi-
cantly higher than that in the S condition ðtð15Þ ¼
−2:652, p ¼ 0:008Þ and Sþ L condition (t(15) ¼ −2.958, 
p¼ 0.003). No significant difference was found between the 
S and Sþ L conditions.

Copresence. The Shapiro-Wilk test showed the copresence 
data in S ðp ¼ 0:09Þ, Sþ Lðp ¼ 0:098Þ and Sþ Lþ P 
(p¼ 0.578) were all normally distributed. Mauchly’s test 
indicated the sphericity assumption was met (W¼ 0.86, 
p¼ 0.348). As shown in Figure 8(a), the repeated ANOVA 
revealed a significant difference among the three agent con-
ditions (F(2, 30) ¼ 6.633, p¼ 0.004, g2

g ¼0.176). The Post- 
Hoc pairwise t-tests with Bonferroni correction revealed that 
the copresence in the Sþ Lþ P condition was significantly 
higher than that in the S condition (t(15) ¼ −2.612, 
p¼ 0.009). No other significant difference was found in 
other pairwise comparisons.

Attentional allocation. The Shapiro-Wilk test indicated the 
normality assumption was violated in the attentional alloca-
tion data in Sþ LþP (p¼ 0.03). No significant difference 
was found among the three conditions using the Friedman 
test (see Figure 8(b)).

Perceived message understanding. The Shapiro-Wilk test 
revealed the perceived message understanding data was nor-
mally distributed in S (p ¼0:329Þ, Sþ Lðp¼ 0.306) and 
Sþ LþP (p¼ 0.126). Mauchly’s test indicated the sphericity 
assumption was met (W¼ 0.90, p¼ 0.478). We couldn’t find 
a significant difference in the perceived message understand-
ing subscale of social presence among the three agent condi-
tions using the repeated ANOVA test (see Figure 8(c)).

Perceived affective understanding. The Shapiro-Wilk test 
showed the perceived affective understanding data was nor-
mally distributed in S (p¼ 0.477), Sþ L (p¼ 0.373), and 
Sþ LþP (p¼ 0.427). Mauchly’s test indicated the sphericity 
assumption was also met (W¼ 0.889, p¼ 0.438). As shown 
in the Figure 8(d), the repeated ANOVA revealed a signifi-
cant difference among the three agent conditions (F(2, 30) 
¼ 4.319, p¼ 0.022, g2

g ¼ 0:095). The Post-Hoc pairwise t- 
tests with Bonferroni correction showed that the perceived 
affective understanding in the Sþ LþP condition was sig-
nificantly higher than that in the Sþ L condition (t(15) ¼
−2.241, p¼ 0.025). No other significant difference was found 
in other pairwise comparisons.

Perceived affective interdependence. The Shapiro-Wilk test 
indicated the perceived affective interdependence data was 

Figure 8. Boxplots of subscales from social presence questionnaire (5-point Likert Scale from 1 to 5; the larger solid dot in each condition represents mean value; 
Statistical significance: � (p < 0:05), �� (p < 0:001).
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normally distributed in S (p¼ 0.357), Sþ L (p¼ 0.415) and 
Sþ LþP (p¼ 0.285). Mauchly’s test indicated the sphericity 
assumption was met (W¼ 0.808, p¼ 0.224). As illustrated in 
the Figure 8(e), the repeated ANOVA revealed a significant 
difference among the three agent conditions (F(2, 30) ¼
6.45, p¼ 0.005, g2

g ¼ 0:078). The Post-Hoc pairwise t-tests 
with Bonferroni correction showed that the perceived affect-
ive interdependence in the Sþ Lþ P condition was signifi-
cantly higher than that in the Sþ L condition (t(15) ¼
−2.697, p¼ 0.007). No other significant difference was found 
in other pairwise comparisons.

Perceived behavioural interdependence. The Shapiro-Wilk 
test showed the perceived behavioral interdependence data 
violated the normality assumption in the condition 
Sþ LþP (p¼ 0.026). No significant difference was found 
among the three conditions using the Friedman test (see 
Figure 8(f)).

5.1.3. SAM valence-arousal scale
For the SAM Arousal scale, the Shapiro-Wilk test indicated 
the SAM Arousal data in S (p¼ 0.032) and Sþ LþP 
(p¼ 0.004) violated the normality assumption. As shown in 
Figure 9(a), the Friedman test showed there was a significant 
difference among the three agent conditions 
(v2ð2Þ ¼ 13:0, p ¼ 0:002), with a moderate effect size 
(W¼ 0.406) by the following Kendall’s W test. The post hoc 
Wilcoxon signed-rank test with Bonferroni correction 
revealed the arousal in the Sþ Lþ P condition was signifi-
cantly higher than that in the S condition (Z¼−2.576, 
p¼ 0.01). No significant difference was found in other pair-
wise comparisons.

For the SAM Valence scale, the Shapiro-Wilk test showed 
the normality assumption was met. Mauchly’s test 
(W¼ 0.926, p¼ 0.584) did not indicate any violation of 
sphericity. No significant difference was found using the 
repeated ANOVA among the three conditions (F(2, 30) ¼
2.976, p¼ 0.066, g2

g ¼ 0.055).

5.1.4. NASA-TLX weighted workload
The Shapiro-Wilk normality test showed that all NASA-TLX 
weighted workload data of S (p ¼.801), Sþ L (p ¼.725), 
Sþ LþP (p ¼.064) met the normality assumption. 
Mauchly’s test showed the NASA-TLX weighted workload 
data also met the sphericity assumption (W¼ 0.856, 
p¼ 0.363). No significant difference was found among the 
three agent conditions using a repeated ANOVA (F(2, 30) ¼
0.370, p¼ 0.694).

5.1.5. Interview on user preference
After interacting with all three agent conditions, participants 
ranked the conditions they most and least liked. A Chi- 
Square Goodness of Fit test yielded a significant difference 
against the most liked agent type (v2 (2) ¼ 19.313, 
p< 0.0001). However, no significant difference was found 
on the most hated agent type (see Figure 10).

5.1.6. Interview on emotional cues perception
All the participants reported that they perceived the stron-
gest emotional cues in the Sþ LþP condition. Detailed 
comments are quoted in the discussion section to support 
the discussion.

Figure 9. Boxplots of self Assessment Manikin (SAM) arousal Valence questionnaire (9-point Likert Scale from 1 to 9; the larger solid dot in each condition repre-
sents mean value; Statistical significance: � (p < 0:05).
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5.1.7. Interview on agent role preference
A Chi-squared test of independence revealed a significant 
association between Gobang skill level and agent role prefer-
ence (v2 (2) ¼ 6.451, p¼ 0.04). As shown in Figure 10, par-
ticipants with higher Gobang skill levels preferred the 
opponent role, while participants with lower skill levels pre-
ferred the assistant role.

5.2. Physiological measurement results

5.2.1. EEG-based engagement index
The Shapiro-Wilk normality test on the EEG-based engage-
ment index indicated the normality assumption was violated 
in all single electrodes. As shown in the Figure 11, the 
Friedman test showed there was a significant difference 
among three agent conditions ðv2ð2Þ ¼ 6:62, p ¼ 0:037Þ at 
AF3. The follow-up Kendall’s W test revealed a small effect 
size (W¼ 0.254). The post-hoc pairwise Wilcoxon signed- 
rank tests with Bonferroni correction revealed that the EEG- 
based engagement index in the Sþ LþP group was signifi-
cantly lower than those in the Sþ L (Z¼−2.366, p¼ 0.018). 
No other significant difference was found regarding the 
EEG-based engagement index.

Since the EEG-based engagement index and social 
engagement questionnaire (see Section 5.1) were both used 
to measure the user’s engagement, we further analyzed the 
correlation between the social engagement and EEG-based 
engagement index. The Pearson correlation test showed no 
significant correlation between the social engagement and 
EEG-based engagement index in the S (r ¼−0:140, p¼0:648Þ, 
Sþ Lðr¼−0:216, p¼0:479Þ and Sþ Lþ Pðr¼−0:172, p¼
0.574) conditions.

5.3. Behavioral measurements results

5.3.1. GD proportion
The Shapiro-Wilk test indicated that eye gaze duration pro-
portion in both the Sþ L (p¼ 0.411) and Sþ LþP 
(p¼ 0.124) conditions were normally distributed. No signifi-
cant difference was found between these two groups using a 
pairwise t-test with Bonferroni correction (t(15) ¼ −0.951, 
p¼ 0.357). Descriptive statistics showed the Sþ Lþ P 
(M¼ 51.204%, SD¼ 13.163%) had higher eye duration pro-
portion than the Sþ L (M¼ 47.055%, SD¼ 12.162%).

5.3.2. Player average speed
The Shapiro-Wilk normality test showed that the player 
average speed of S (p ¼.120), Sþ L (p ¼.186), and Sþ Lþ P 
(p ¼.162) all met the normality assumption. The Mauchly 
test showed that the sphericity assumption was met 
(W¼ 0.832, p¼ 0.303). No significant difference was found 
across the three conditions by using a repeated measure 
ANOVA with sphericity assumed (F(2, 28) ¼ 0.218, 
p¼ 0.805). Descriptive statistics indicated that participants 
in the Sþ Lþ P condition (M¼ 6.21, SD ¼ 2:21) and the 
Sþ L condition (M ¼ 6:45; SD ¼ 2:30) played slightly 
slower, taking longer to complete each move, compared to 
the S condition (M ¼ 6:16; SD ¼ 2:32).

5.3.3. Rounds of play
The Shapiro-Wilk normality test showed that the rounds of 
play in S (p¼ 0.021), and Sþ Lþ P (p< 0.001) violated the 
normality assumption. No significant difference was found 
across the three conditions by using a Friedman test 

Figure 10. Agent behavior and role preference.

Figure 11. Results of the EEG-based engagement index at AF3(three partici-
pants’ data was not correctly recorded and excluded from EEG data processing; 
the larger solid dot in each condition represents mean value; Statistical signifi-
cance: ���� (p < 0:0001).
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(v2ð2Þ ¼ 3:12, p ¼ 0:21). Descriptive statistics showed that 
participants in the Sþ LþP condition (M¼ 16, SD¼ 11.6) 
and the Sþ L condition (M ¼ 15; SD ¼ 7:28) played fewer 
rounds compared to the S condition(M ¼ 24; SD ¼ 13:9).

5.3.4. Task performance
Task performance was measured based on game outcomes, 
categorized as user win, user loss, or tie, making it a categor-
ical variable. A Chi-square test of independence was conducted 
to examine the relationship between task performance and 
agent conditions. As shown in Figure 12 (a), the results 
showed no significant association between task performance 
and the agent conditions (v2 (4) ¼ 4.486, p¼ 0.344). 
Interestingly, when applying Chi-square tests to the three dif-
ferent game outcomes within each agent condition to test the 
Goodness of fit, significant differences were found between the 
game outcomes in the Sþ L condition (v2 (1) ¼ 9, p¼ 0.003) 
and the Sþ LþP condition (v2 (2) ¼ 12.875, p¼ 0.002), while 
no significant difference was observed in the S condition (v2 

(2) ¼ 4.625, p¼ 0.099).
Moreover, considering that participants’ experience in the 

Gobang game might influence the game outcomes, we further 
examined the relationship between task performance and user 
Gobang skills, as reported in the demographic questionnaire. 
A Chi-square test of independence was conducted to assess 
this relationship. As shown in Figure 12(b), the results indi-
cated no significant association between task performance and 
user Gobang skills (v2 (4) ¼ 3.524, p¼ 0.474).

5.3.5. Task completion time
The Shapiro-Wilk test showed the normality assumption on 
the task completion time was violated in the Sþ Lþ P condi-
tion (p <.001). No significant difference was found in the task 
completion time over the three conditions using a Friedman 
test (v2ð2Þ ¼ 0:875, p ¼ 0:646). Descriptive statistics showed 
the Sþ Lþ P (M¼ 178.88, SD ¼ 118:72) and Sþ L 
(M ¼ 148:31; SD ¼ 91:72) conditions had shorter task com-
pletion time than the S (M ¼ 186:25; SD ¼ 118:72) condition.

6. Discussion

In general, we found significant differences between the three 
agent conditions in subjective and physiological measure-
ments, while no significant differences were observed in the 

behavioral measurements. Notably, all significant differences 
occurred between the Sþ Lþ P condition and the other two 
conditions, with no significant differences between the S and 
Sþ L conditions. Thus, our results did not support H1a or 
H2a. However, the subjective measurements supported H1b, 
while the EEG-based engagement index contradicted H2b. 
The discrepancy between the subjective measurements and the 
EEG-based engagement index may be due to the different 
aspects of engagement each method captures, and no correl-
ation was found between the two measures in our results (see 
Section 5.2). The following sections will discuss these findings 
in more detail.

6.1. Combining locomotion and postures enhances 
social perception of the Mixed Reality agent

Our subjective questionnaire results of social presence, social 
engagement, SAM arousal, and interview on user preference 
supported H1b but rejected H1a.

Participants reported stronger overall social presence and 
engagement while playing against the Sþ LþP agent com-
pared with the S agent. For the Sþ LþP agent, the virtual 
agent locomotion behavior in the MR environment and pos-
tures like folding arms to push participants, looking around 
the board as if it was thinking about where to place the 
piece, and expressing emotional postures at the game end, 
exerting social cues into the game and thus improved the 
social presence and engagement. These results are in line 
with previous work (Kim et al., 2018b), where they also 
argued that the virtual agent’s appropriate social behavior 
played a role in improving social presence and engagement.

In addition to the overall social presence and engagement, 
we further examined the subscales of social presence and 
found that the Sþ LþP agent exhibited significantly higher 
copresence and perceived affective interdependence compared 
to the S condition, as well as significantly higher perceived 
affective understanding compared to the Sþ L condition. 
These results could be validated by the participants’ comments 
towards interview Q1. For example, P19 commented “I like 
the agent with posture because he expressed emotional postures 
making me feel as if interacting with a real person” and P08 
commented “I think the agent with posture looks more alive 
and the virtual body could sometimes remind me about where 
the black piece was placed.” Moreover, P07 reported that 
“ … overall I could feel the virtual agents were stronger than me 

Figure 12. Analysis of task performance in relation to agent conditions and participant Gobang skills.
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in playing this game. But the agent with postures like looking 
around before moving his pieces made me more positive and 
confident because I thought it looked like he also needed to 
think hard to win me … ” These findings suggest that the 
Sþ LþP agent was perceived as more alive, interactive, and 
emotionally expressive, enhancing participants’ social percep-
tion of the virtual agent.

Regarding perceived emotional cues, our SAM arousal 
results indicated that the Sþ LþP agent elicited signifi-
cantly higher emotional arousal compared to the S agent. 
This finding was consistent with the social presence subscale 
results, specifically in perceived affective interdependence 
and perceived affective understanding. Furthermore, in 
interview Q3, all participants reported perceiving the stron-
gest emotional cues in the Sþ LþP condition, further sup-
porting the effectiveness of this condition in enhancing 
users’ social perceptions.

However, no significant difference was found in the SAM 
valence, though the SAM arousal was significantly higher in 
Sþ LþP compared to S conditions. This could be because, 
in general, participants perceived stronger emotional cues in 
the Sþ Lþ P agent, but some people felt positive towards 
the perceived emotional cues while others felt negative. For 
example, P04 commented while answering the interview Q1, 
“ … the agent with postures was more interactive and 
likable … ” On the contrary, P10 commented while answer-
ing the interview Q2, “I hate the virtual agent showing pos-
tures because his behavior of folding up his arms and asking 
me to move faster made me think he was impolite. However, 
while interacting with the speech-only agent, I could not tell if 
he was pushing me politely or not … ” This could partially 
explain why the SAM valence didn’t show a significant dif-
ference in Sþ LþP compared with the S conditions.

Lastly, our findings did not support H1a, which may be 
because that providing the embodied virtual agent with loco-
motion alone did not significantly enhance users’ social per-
ceptions of the agent in this experiment. It is possible that 
the agent’s locomotion behavior was less effective than pos-
tures in fostering social presence and engagement. In inter-
view Q2, P15 remarked, “ … the locomotion agent didn’t 
make sense to me and at times its movement distracted my 
attention … ”, while P17 noted, “ … the locomotion agent 
sometimes stared at me, which felt cold and rigid … ” These 
comments suggest that locomotion may not be as impactful 
as postures in promoting social presence and engagement.

Overall, our subjective results suggested that combining 
locomotion and postures in the virtual agent could enhance 
social presence and engagement, as well as perceived emo-
tional cues, in the MR environment. The Sþ Lþ P agent 
was perceived as more alive, interactive, and emotionally 
expressive, which may have contributed to the enhanced 
social perception of the agent. 

6.2. Increased social perception in Mixed Reality agent 
may lead to a lower EEG-based engagement index in 
the board game

Our EEG engagement index results led to the rejection of 
both H2a and H2b. No significant differences were observed 

in the EEG-based engagement index, either at individual 
electrodes (except AF3) or across combined electrodes, 
between the Sþ L and S conditions, thus rejecting H2a. 
Furthermore, the engagement index at electrode AF3 was 
significantly lower in the Sþ Lþ P condition compared to 
the Sþ L condition, which directly contradicts H2b. No 
other significant differences were found between the Sþ L 
and Sþ LþP conditions, further supporting the rejection 
of H2b.

Interestingly, while the EEG-based engagement index at 
AF3 was significantly lower in the Sþ LþP condition, this 
was opposite to the social engagement questionnaire results. 
However, no significant correlation was found between the 
EEG engagement index and the social engagement question-
naire scores. This discrepancy may be due to the different 
aspects of engagement each method captures. The engage-
ment questionnaire mainly focused on how participants 
interacted with the virtual agent, as the statements are spe-
cifically related to human-agent interaction (Leite et al., 
2014). In contrast, the EEG engagement index measured 
participants’ information-gathering, visual processing, and 
allocation of attention (Berka et al., 2007; Pope et al., 1995). 
Furthermore, the electrode AF3 captured the brain activities 
around the anterior-frontal cortex, which was associated 
with attention and cognitive control Chun et al. (2011).

In our study, participants were primarily focused on the 
Gobang game, likely dividing their attention between inter-
acting with the virtual agent and concentrating on game 
strategy. As shown by the descriptive results of gaze propor-
tion (see Section 5.3), in the Sþ LþP condition, partici-
pants spent over 50% of their gaze duration on the virtual 
agent, while in the Sþ L condition, nearly 50% of their gaze 
duration was directed at the agent. This suggested that the 
virtual agent’s body and behaviors like locomotion and pos-
tures drew approximately half of the participants’ visual 
attention away from the game board. This finding aligns 
with participants’ comments during interview Q2. For 
example, P10 stated, “I hate the virtual agent showing pos-
tures because his behavior of folding up his arms and asking 
me to move faster made me think he was impolite. 
However, while interacting with the speech-only agent, I 
could not tell if he was pushing me politely or not.” And 
P19 said, “ … the virtual agent’s body made no sense to me 
and sometimes even occluded my target on the 
chessboard … ” These comments underscore that the agent’s 
physical movements and presence were perceived as distract-
ing and, in some cases, obstructive to the gameplay 
experience.

Consistent with the descriptive statistics of gaze propor-
tion, other behavioral measures, such as average player 
speed, rounds of play, and task completion time, showed 
that the embodied agent conditions, Sþ L and Sþ LþP, 
were associated with slower player speeds, fewer rounds of 
play, and shorter task completion times compared to the S 
condition. Additionally, our task performance results indi-
cated that participants in the Sþ L and Sþ LþP conditions 
experienced significantly more losses than wins or ties, while 
no significant performance distribution was observed in the 
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S condition. Importantly, participants’ self-reported Gobang 
skill levels did not significantly influence task performance 
and the different agent behaviors did not significantly affect 
workload, as evidenced by the NASA TLX results. These 
findings suggested that the virtual agent was generally more 
skilled than most participants, and the embodied agent’s 
locomotion and behaviors might have distracted participants 
from the game’s logic and strategy, potentially resulting in 
the higher loss rates in the Sþ L and Sþ Lþ P conditions.

In particular, the social behaviors of the Sþ LþP agent, 
such as looking around the board before making a move, 
folding its arms to prompt participants, and expressing emo-
tional postures, might have drawn participants’ attention 
away from the game, resulting in slower gameplay and fewer 
rounds. This divided attention could also explain why the 
EEG engagement index at AF3 was significantly lower in the 
Sþ LþP condition compared to the Sþ L condition, as par-
ticipants were splitting their focus between interacting with 
the virtual agent and concentrating on the game.

In summary, we propose that the locomotion and pos-
tures of the Sþ LþP agent enhance social presence and 
engagement, as indicated by subjective questionnaires. 
However, these behaviors may divert participants’ attention 
from the game, as evidenced by a lower EEG engagement 
index and supported by behavioral results.

6.3. Implications for human-agent interaction design

As noted by Oertel et al. (2020), engagement in human- 
agent interaction can manifest in two forms: Social engage-
ment, which occurs between the human user and the agent, 
and task engagement, which occurs between the human user 
and the task at hand. Corrigan et al. (2013) further extended 
the concept of social engagement and task engagement to 
social-task engagement which happens in scenarios where 
human users and agents work collaboratively on an explicit 
task.

In our study, participants played the Gobang game 
against the virtual agent, where users engaged with both the 
game logic and the virtual agent behaviors. In other words, 
both task engagement (i.e., engagement with the Gobang 
game logic) and social engagement (i.e., engagement with 
the virtual agent) were involved in our study. The EEG 
engagement index could potentially measure the overall 
social-task engagement because participants’ cognitive activ-
ities were driven by the brain, which the EEG signals could 
capture. In contrast, the engagement questionnaire used by 
our study mainly focuses on social engagement because each 
statement in the questionnaire is related to the interaction 
with the virtual agent. Our behavioral measurements, like 
GD proportion, player average speed, rounds of play, and 
task completion time, could be related to task engagement. 
Therefore, in our study, the engagement questionnaire meas-
ures social engagement, behavioral metrics assess task 
engagement, and the EEG-based engagement index reflects 
overall engagement. As discussed in Section 6.1 and Section 
6.2, the Sþ Lþ P agent in our study enhanced social percep-
tions but may have led to lower overall engagement. There 

was no significant difference in task engagement as meas-
ured by behavioral metrics. However, to comprehensively 
understand the relationships among social engagement, task 
engagement, and overall social-task engagement in human- 
agent interactions, further research is necessary.

Additionally, responses to interview question Q4 on agent 
role preference revealed that participants with higher self- 
reported Gobang skill levels preferred the agent to take on 
an opponent role, while those with lower skill levels favored 
the assistant role. This suggests that users’ individual prefer-
ences for the agent’s role may also influence their perception 
of and interaction with the agent.

By integrating the discussions from this section with 
those in Section 6.1 and Section 6.2, we highlight the Design 
Implications (DI) of our work for future human-agent social 
interaction in task-oriented scenarios within MR:

DI1. Integrating both locomotion and postures can enhance 
the social perception of a MiRA (based on discussions 
in Section 6.1).

DI2. Although locomotion and postures in MiRAs can 
enhance social perception, they may also distract 
users, potentially leading to decreased task perform-
ance (based on discussions in Section 6.2).

DI3. A comprehensive evaluation of users’ experiences with 
MiRAs should incorporate subjective, behavioral, and 
physiological measurements to capture a holistic view 
of user perception (based on discussions in Section 6.1
and Section 6.2).

DI4. Effective human-agent social interaction design should 
carefully balance social engagement, task engagement, 
and overall social-task integration to prevent enhanced 
social perception from leading to decreased overall 
engagement (based on discussions in Section 6.3).

DI5. The roles and behaviors of virtual agents should take 
into account users’ individual preferences to optimize 
interaction experiences (based on observations in 
interview Q4).

7. Limitations

Our work has some limitations. First, this work did not dir-
ectly assess task engagement and did not extensively investi-
gate the interplay among social engagement, task 
engagement, and overall engagement. Second, although the 
Sþ L and Sþ LþP agents embodied in the MR environ-
ment, the locomotion behavior didn’t show awareness of the 
physical environment, which was proved to be useful to 
improve social presence and engagement (Kim et al., 2017; 
2018a). Moreover, although we reduced the transparency of 
the virtual agent’s body to avoid occluding the chessboard 
behind the body, the realism of the virtual agent’s appear-
ance was also weakened. Another issue was that mounting 
the Hololens headset on top of the EEG cap might disturb 
the movements of electrodes and thus result in poor EEG 
signals.
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8. Conclusion and future work

Nonverbal cues in MiRAs are essential for shaping users’ 
perceptions, as reflected by physiological states captured 
through EEG. However, previous studies have primarily 
assessed the impact of MiRAs’ nonverbal behaviors on social 
perception using subjective and behavioral measurements. In 
this paper, we investigate how nonverbal cues, such as loco-
motion and emotional postures in MiRAs, influence social 
perceptions by integrating EEG with behavioral and subject-
ive measurements to assess users’ social perceptions 
comprehensively.

In this paper, we explored the impact of mixed reality 
agents’ non-verbal cues, like locomotion and emotional pos-
tures, on perceived social presence, engagement, and user 
brain activity. We presented a within-subject user study 
where participants were asked to win against the virtual 
agent over a Gobang game in an MR environment. Three 
types of the virtual agent were designed by varying the 
embodiment and behaviors: 1) A Speech-only (S) agent 
communicating through speech only, 2) an embodied agent 
with both Speech and Locomotion behavior (S 1 L) for plac-
ing the pieces, and 3) an embodied agent with Speech, 
Locomotion and Postures (S 1 L 1 P) related to the game 
process. We found that the S 1 L 1 P agent had significantly 
higher social presence, engagement, and emotional arousal 
than the S agent and was liked most by the participants. 
However, the EEG-based engagement index at AF3 was 
lower in the S 1 L 1 P condition than in the S 1 L condi-
tion, opposite to the engagement measured by the question-
naire. No significant difference was found in behavioral 
measurements. We discussed the observed discrepancy 
between engagement questionnaire results and EEG-based 
engagement index and provided design implications for 
future mixed reality agent design.

In the future, we plan to explore the impact of relation-
ships between the user and virtual agent on user perception 
and behaviors. For example, unlike playing against the vir-
tual opponent shown in this paper, we can also have a vir-
tual assistant to suggest where to place the piece while 
playing the Gobang game. It would also be interesting to 
explore how non-verbal cues help establish rapport, trust, 
and perceived friendliness when the virtual agent’s role turns 
to an assistant.

Notes

01. https://developer.amazon.com/en-US/alexa
02. https://www.microsoft.com/en-us/cortana/
03. https://www.apple.com/siri/
04. https://www.soulmachines.com/
05. https://cloud.ibm.com/catalog/services/text-to-speech
06. https://www.mixamo.com/
07. https://dotween.demigiant.com/
08. https://developer.oculus.com/documentation/unity/audio- 

ovrlipsync-viseme-reference/
09. https://github.com/SSSxCCC/AlphaZero-In-Unity
10. https://github.com/microsoft/MixedRealityToolkit-Unity
11. https://learn.microsoft.com/en-us/windows/mixed-reality/ 

mrtk-unity/mrtk2/features/tools/holographic- 
remoting?view=mrtkunity-2022-05

12. https://www.unicorn-bi.com/
13. https://www.gtec.at/product/gnautilus-pro/
14. https://www.youtube.com/watch?v=LOfIr2F7-Tc
15. https://github.com/sccn/liblsl
16. https://mne.tools/stable/generated/mne.baseline.rescale.html
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