

EMiRAs-Empathic Mixed Reality Agents

Zhuang Chang Yun Suen Pai Jiashuo Cao Kunal Gupta Mark Billinghurst

zcha621@aucklanduni.ac.nz

- I am **Zhuang Chang**, a PhD student from the Empathic Computing Lab, University of Auckland.
- My current PhD research topic is Empathic Mixed Reality Agents.
- I received a master's degree in engineering from the Northwestern Polytechnical University, China in 2018.

Empathic Mixed Reality

[1] Mixed Reality systems that create deeper understanding and empathy between human users

- Understanding
- Experiencing
- Sharing

Mixed Reality Agent

Empathic Mixed Reality Agent (EMiRA)

^[1] Piumsomboon, T., Lee, Y., Lee, G. A., Dey, A., & Billinghurst, M. (2017, June). Empathic mixed reality: Sharing what you feel and interacting with what you see. In 2017 International Symposium on Ubiquitous Virtual Reality (ISUVR) (pp. 38-41). IEEE.

^[2] Paiva, A., Leite, I., Boukricha, H., & Wachsmuth, I. (2017). Empathy in virtual agents and robots: A survey. ACM Transactions on Interactive Intelligent Systems (TiiS), 7(3), 1-40. [3] Holz, T., Campbell, A. G., O'Hare, G. M., Stafford, J. W., Martin, A., & Dragone, M. (2011). Mira—mixed reality agents. International journal of human-computer studies, 69(4), 251-268.

What is the state-of-the-art on EMiRAs?

Empathic Mixed Reality Agent

Perception-Action Model

- -Virtual environment
- -Physical environment
 - Non-human objects
 - Human/User

Sensing Physical Environment

- -Virtual environment
- -Physical environment
 - Non-human objects
 - Human/User

Sensing Physical Environment

IoT sensor-based perception on the physical environment

[1]

[2]

Acting on Physical Environment

- -Virtual environment
- -Physical environment
 - Non-human objects
 - Human/User

Acting on Physical Environment

IoT sensor-based actuation in the physical environment

[1] Kim, K., Boelling, L., Haesler, S., Bailenson, J., Bruder, G., & Welch, G. F. (2018, October). Does a digital assistant need a body? The influence of visual embodiment and social behavior on the perception of intelligent virtual agents in AR. In 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 105-114). IEEE.

[2] Schmidt, S., Ariza, O., & Steinicke, F. (2020). Intelligent blended agents: Reality-virtuality interaction with artificially intelligent embodied virtual humans. Multimodal Technologies and Interaction, 4(4), 85.

Perceiving Human

- -Virtual environment
- -Physical environment
 - Non-human objects
 - Human/User

Perceiving Human

Physiological sensor-based perception on the human

[1]

Figure 1. In our study, participants interacted with an embodied agent that monitored their attention using EEG signals in realtime and adapted its behavior to improve the discourse.

Acting on Human

- -Virtual environment
- -Physical environment
 - Non-human objects
 - Human/User

Acting on human

Tactile sensor-based acting on the human users

[1]

[2]

^[1] Boucaud, F., Tafiani, Q., Pelachaud, C., & Thouvenin, I. (2019, February). Social touch in human-agent interactions in an immersive virtual environment. In 3rd International Conference on Human Computer Interaction Theory and Applications (HUCAPP 2019) (pp. 129-136).

[2] Hoppe, M., Rossmy, B., Neumann, D. P., Streuber, S., Schmidt, A., & Machulla, T. K. (2020, April). A human touch: Social touch increases the perceived human-likeness of agents in virtual reality. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1-11).

A Classification Tool

Corporeal Presence and Interactive Capacity (CPIC) matrix

	V irtual Environment	Physical Environment		M ixed Reality Environment
		N on-human objects	Human	
V irtual Embodiment	-	VPN	VPH	– VM
P hysical Embodiment	PV	-	-	PM
M ixed Reality Embodiment	MV	MPN	MPH	MM

Opportunities and Challenges in EMiRAs

Opportunities

- Enabling EMiRAs to deeper understand humans
 - Multiple sensors based human understanding
- Understanding the impact of EMiRAs' multimodal communication cues on human perception
 - verbal and nonverbal cues
 - Empathic touch
- Exploring factors that foster empathy in EMiRAs
 - loT sensors/actuators based physical-virtual interaction
 - biosensors based perception on users' states
 - Tactile sensors based empathic touch

Challenges

Ethical Concerns

- Data privacy
- Safety

Evaluating perceived empathy

Lack of effective methods

Computing human cognitive and emotional state

- Hard to detect human states accurately
- Poor user experience

Summary

- We defined the concept of Empathic Mixed Reality Agent (EMiRA)
- We provided Corporeal Presence and Interactive Capacity matrix to examine the EMiRA's embodiment and interaction capacities
- We identified research opportunities and challenges on EMiRAs

Thank you

zcha621@aucklanduni.ac.nz